
WATER RESOURCES RESEARCH, VOL. 29, NO. 10, PAGES 3389-3405, OCTOBER 1993 

Thermodynamic Basis of Capillary Pressure in Porous Media 

S. MAJID HASSANIZADEH 

National Institute of Public Health and Environmental Protection, Bilthoven, Netherlands 

WILLIAM G. GRAY 

Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 

Important features of multiphase flow in porous media that distinguish it from single-phase flow are 
the presence of interfaces between the fluid phases and of common lines where three phases come in 
contact. Despite this fact, mathematical descriptions of these flows have been lacking in rigor, 
consisting primarily of heuristic extensions of Darcy's law that include a hysteretic relation between 
capillary pressure and saturation and a relative permeability coefficient. As a result, the standard 
capillary pressure concept appears to have physically unrealistic properties. The present paper 
employs microscopic mass and momentum balance equations for phases and interfaces to develop an 
understanding of capillary pressure at the microscale. Next, the standard theories and approaches that 
define capillary pressure at the macroscale are described and their shortcomings are discussed. 
Finally, an approach is presented whereby capillary pressure is shown to be an intrinsic property of 
the system under study. In particular, the presence of interfaces and their distribution within a 
multiphase system are shown to be essential to describing the state of the system. A thermodynamic 
approach to the definition of capillary pressure provides a theoretically sound alternative to the 
definition of capillary pressure as a simple hysteretic function of saturation. 

INTRODUCTION 

Capillary pressure and capillary action play a central role 
in the description of multiphase (and unsaturated) flow in 
porous media. Although processes determining the distribu- 
tion of fluids are extremely complicated, the main theoretical 
and practical tool currently in use for characterizing the 
nature of this distribution is an empirical relationship be- 
tween capillary pressure and saturation p c = p C(sW). The 
unfulfilled premise of the traditional capillary theory is that 
this simple model provides a suitable basis for accounting for 
all effects and processes that influence the fluid distribution 
such as immiscibility, surface tension, presence of micro- 
scopic scale fluid-fluid interfaces, fluid viscosity, wettability 
of solid surfaces, grain size distribution, microscale and 
macroscale heterogeneities, solid matrix deformation, fluid 
composition, etc. All of these effects are essentially lumped 
into the p C(s •) relationship. Although a myriad of theoret- 
ical and experimental works exist that attempt to delineate 
the influence of the individual factors on the capillary 
pressure versus saturation relationship, a rigorous and con- 
sistent thermodynamic theory of capillarity that provides a 
phenomenological correspondence among the relevant pro- 
cesses is still lacking. The need for a rigorous theory of 
capillarity has been enunciated by Scheidegger [1974, p. 61]: 
"A consistent theory of capillary pressure in porous solids 
should provide an explanation of the fundamental relation- 
ship between saturation and capillary pressure (or interfacial 
curvature). To date, this does not seem to have been 
obtained." Two decades later, such a fundamental relation- 
ship is still not available and the information on a thermo- 
dynamic basis of capillary pressure seems to be somewhat 
fragmentary. Some studies are based on the microscopic 
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relationships for capillary pressure in tubes or pores of very 
simple geometry. The resulting equations are thus only an 
extrapolation of those microscopic relationships to the mac- 
roscale. Furthermore, experimental studies often examine 
only equilibrium conditions and the results of these studies 
are merely assumed to apply under dynamic conditions also. 

In recent years, some progress has been made in laying the 
foundation for a coherent and systematic theory of mul- 
tiphase flow in porous media. Two parallel and somewhat 
related approaches have been followed. Marle [1972], 
Kalaydjian [1987], and Pavone [1989] employ nonequilib- 
rium thermodynamics, and Hassanizadeh and Gray [1990] 
and Gray and Hassanizadeh [ 1991 b] use the Coleman and 
Noll method in developing their theories. Two very impor- 
tant characteristics of these approaches, absent in other 
theories, are (1) all parts of a multiphase system including 
bulk phases, interfaces, and contact lines are modeled, and 
(2) constitutive relationships describing the behavior of the 
system are developed at the macroscale. In the nonequilib- 
rium thermodynamic approach, however, fluid pressure is 
introduced at the microscale and a number of thermody- 
namic relationships known for a single phase fluid continuum 
are assumed a priori to hold for a multiphase medium at the 
macroscale. As a result, the thermodynamic equation for 
capillary pressure obtained by Kalaydjian [ 1987] and Pavone 
[1989] is somewhat lacking in generality. 

In the present paper, first a description of the capillary 
action in a capillary tube at the micro scale is provided based 
on momentum balances for interfaces and a contact line. 
These equations provide the theoretical bases for the La- 
place equation for an interface and Young's equation for a 
contact line, respectively. Hysteresis in microscopic capil- 
lary pressure is discussed and explained based on the 
interaction forces between the contact line and solid-fluid 
interfaces. Next the present theories and approaches that 
define capillary pressure at the macroscale are described and 
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Fig. 1. Schematic diagram of a capillary with wn interface 
having unit vector N between two fluid phases, ws interface between 
the wetting phase and the solid, ns interface between the nonwetting 
phase and the solid, and the wns contact line where the three phases 
come together. 

V•ywn = _(V•.,wn) . i • (1) 

-ywn(v•' N) + (pn _ pW) = -(V•-a'wn). N (2) 
respectively, where 

ywn interfacial tension of the interface between the w 
and n phases; 

N unit vector as in Figure 1; 
p • pressure in the a phase; 

a .wn denotes the interfacial viscous forces present when 
the interface is in motion; 

I identity tensor; 
I • surficial identity tensor, I - NN. 

The term V •. N may be expressed in terms of the mean 
curvature of the surface R by the relation [e.g., Aris, 1962] 

V o.. N = 2/R (3) 

such that (2) becomes 

their shortcomings are discussed. Finally, an alternative 
definition of macroscale capillary pressure is given based on 
the theories developed by Hassanizadeh and Gray [1990] 
and Gray and Hassanizadeh [ 1991 b]. Capillary pressure is 
shown to be an intrinsic property 6i{ the system under study 
expressed in terms of the change in free energy of the phases 
and interfaces due to a change in saturation. It is shown that 
capillary pressure is equal to the difference between nonwet- 
ting and wetting phas.e pressures only at equilibrium, and a 
first-order nonequilibrium, expression is provided. Hystere- 
sis in capillary pressure is argued to be due to lumping of too 
many effects in the p c (s TM) relationship. In particular, the 
presence of interfaces and their distribution in the porous 
medium is considered to be important to describing the state 
of the system. An expanded dependence of capillary pres- 
sure on saturation as well as the specific interfacial area of 
fluid-fluid interfaces is suggested as an appropriate func- 
tional relationship that will exhibit reduced hysteresis. 

MICROSCALE MOMENTUM BALANCE EQUATION 
FOR A SURFACE 

A full discussion of capillary dynamics at the microscale is 
best carried out in the context of the momentum balance 

equations for the interface between two phases and for the 
curve where three phases meet. In a capillary filled with two 
immiscible fluids, interfaces may form between the two 
fluids and between each of the fluids and the solid. These 

three interface types are depicted in Figure 1. Additionally, 
the curve where the three. interfaces intersect, the common 
line or contact line, is also indicated in Figure 1. 

The movement of the flu{d-fluid interface is governed by 
the balance of the force• e•erted by the two fluids on the 
interface and the forces present within the interface. In 
Appendix A, the momentum balance equation for a fluid- 
fluid interface is developed. The interface is considered to 
behave as a viscous Newtonian fluid to obtain a microscopic 
constitutive theory. For the case where the viscous interac- 
tion of the fluid phases with the interface are negligible and 
the inertial contributions to the interfacial flow are ne- 

glected, the tangential and normal components of the mo- 
mentum balance are 

2T wn 
_ • + (pn _ pW) = _(VV.xwn). N (4) 

R 

Additionally in Appendix A, a constitutive equation is 
given for the surface stress tensor of a fluid-solid interface 
modeled as an elastic surface. Although such an interface is 
not of primary interest in the current work, the effects of the 
fluid-solid interfaces on the contact line dynamics are impor- 
tant and must be accounted for. Indeed, the tendency of the 
contact line to move in a particular direction is opposed or 
assisted by the forces within the solid-fluid interfaces. 

The contact line is actually a transition zone where mo- 
lecular forces from the two fluid phases and the solid 
interact. In a continuum approach at the microscale, this 
zone is treated as a one-dimensional continuum. The dynam- 
ics of the contact line are treated as being governed by forces 
originating from interactions among solid-fluid and fluid-fluid 
interfaces. Note that when the contact line is fixed to the 

solid surface, elastic forces are present within the solid-fluid 
interface contributing to the balance of momentum of this 
curve. These stresses are caused by infinitesimal deforma- 
tion of the solid surface in response to the pull of the 
meniscus on the contact line. The deformations are visible 

for very thin or deformable materials such as a mica sheet 
[Tabor, 1969] or a solidified paraffin crust [Chappuis, 1977]. 
In Appendix B, the momentum balance for the contact line is 
developed and presented as (B6) when the inertial effects are 
negligible. The components of this balance equation tangent 
and orthogonal to the contact curve are obtained by taking 
its inner product with the unit vector A and the tensor I - 
AA, respectively: 

A' VC'y •,ns = A' F (5) 

,ywnsA. VCA _ Vwn,yWn _ Vws,yWS ns - V nsY =(I-AA)'F 

(6) 

where 

,ywns contact curve compression; 
A unit vector tangent to the contact curve; 
F resultant of the elastic surface forces acting on the 

contact line; 
y• interfacial tension of the interface between the a 
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Fig. 2. Forces acting on the wns contact line when a capillary tube 
intersects a wn interface. 

and fl phases; 

v,• unit vector normal to the contact curve and tangent 
to the a/• interface. 

Equation (BS) relates F to the infinitesimal deformation of 
the solid-fluid interface. Experimental evidence for the ex- 
istence of F may be found in the work by Chappuis [1977, 
1982]. This quantity may also be considered to be a formal 
representation of the adhesion forces between a fluid and 
solid that is widely discussed in the literature and is said to 
be at least partially responsible for contact angle hysteresis 
(see, for example, Slattery and Flumerfelt [1982] and Chap- 
puis [1982]). Furthermore, Bartell and Merrill [1932] discuss 
the friction between fluid and solid and the energy that is 
expended as a liquid moves over a solid surface. As such, F 
may be viewed as the frictional force exerted by the solid- 
fluid interfaces on the moving contact line. Equations (5) and 
(6) will be used here in investigating the equilibrium of the 
contact line and hysteresis in the contact angle. 

CAPILLARY PRESSURE AT THE MICROSCALE 

In the first part of this discussion, the phenomenon of 
capillarity at the microscale is briefly analyzed in the context 
of a simple hypothetical experiment and using momentum 
balance equations (1) and (4) for an interface and (5) and (6) 
for the contact line. Although the experiment discussed will 
involve transition of an interface fi'om one state to another, 
the dynamics of the transition will not be considered here. 
0nly equilibrium states attained at the end of various tran- 
sitions will be discussed. 

Consider a large diameter vessel containing two immisci- 
ble fluids, w and n, separated by an interface. Assume that 
the w phase is denser than the n phase and fills the bottom 
portion of the container. The normal vector to the interface 
N is taken to be positive pointing into the w phase. Since the 
container is large, at some distance from its wall, the 
interface between the two phases may be considered to be 
essentially horizontal. Therefore V • ß N = 0 at this location. 
If the system is at rest, U = 0 such that the viscous forces 
given by ,r •n will be zero, and (2) reduces to 

p•_pn =0 (7a) 

indicating that the fluid pressures are equal. The momentum 
balance in the Surface, obtained from (1), is 

V•y •n = 0 (7b) 

Because the solid surface is preferentially wetted by the w 
phase, 

3',,,s < y ,• s (7c) 

This equilibrium situation may now be disturbed by slowly 
lowering a Capillary tube that is preferentially wetted by the 
w phase into the tenter of the container from above. The 
solid materib.1 of the capillary tube will be indicated as the s 
phase. The instant the tube penetrates the wn interface and 
enters the w phase, an sw interface and an swn curve, or 
common line, are formed. At this instant, as depicted in 
Figure 2, the pb. rt of the interface at the center of the tube 
will not sense any disturbance. Information must propagate 
from the tube wall to the tube center. Thus the interface at 

the tube center will momentarily remain at equilibrium and 
balance equations (7a) and (7b) will apply there. However, 
at the common line, the equilibrium state will not exist. 
Forces acting on this common line will be active and tend to 
disturb the interface from its flat configuration. The common 
line will tend to move upward and will cause the wn interface 
to become concave when viewed from above. As a i'esult, 
the interface equilibrium is disturbed and (7 a) will not apply. 
The curvature of the interface requires that a pressure 
difference across the interface be established for equilib- 
rium. Thus the interface, as well as the common line, will 
move tii•ward and will reach a new equilibrium position 
when the forces acting on the common line and the interface 
attain equilibrium separately, as is depicted in Figure 3. 

In Figure 2, y,•s is the interfacial tension betweeh the 
nonwett.ing fluid and the solid, and y•,s is the interfacial 
tension between the wetting fluid and the solid. Because the 
solid phase is preferentially wetted by the w phase, 3 ,as > 
3',,,,s and the common line tends to move upward. If static 
resistance to this movement is overcome, the common line 
will move until it reaches a new equilibrium state (see Figure 
3). At this new equilibrium state, (5) and (6) apply. The three 
components of the contact line momentum balance at equi- 
librium in the directions A, er, and e,. obtained from these 
equations for a vertical cylindrical capillary tube are 

A.. V c3' wns = F' A (8a) 

wits 
_•+ 3'wn sin 0 e = F' e r =fe (8b) 

r 

Fig. 3. An equilibrium configuration for the capillary tube in the w-n system. 
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and 

,)/van GOS 0 e + '¾ ws _ ,)/ns = F'ez = -CSfe (8c) 

respectively, where 

e r unit vector positive normal to the wall out of the fluid 
phases; 

e z unit vector positive upward; 
r radius of the capillary tube; 

fe solid bonding force on the contact line at equilibrium; 
0e equilibrium contact angle; 
C s resistance coefficient that ranges from positive to 

negative values. 

The expression on the left side of (8c) is sometimes referred 
to as "spreading pressure" [Schiegg, 1986]. 

For this case of a vertical capillary tube in which the 
equilibrium common line is a circle, ywns will be considered 
to be a constant property of the common line because of 
symmetry. Therefore V c .),wns in (8a) is zero as is F- A. Thus 
for the experimental configuration under consideration, the 
solid surface exerts no force on the common line in the 

direction tangent to the line at equilibrium [see also Chap- 
puis, 1982]. Note that in this analysis, the elastic forces in 
the solid-fluid interfaces (with their resultant F) are treated 
as forces resisting the movement of the contact line. The 
component of F resisting the inward pull is given by fe as 
defined in (8b). The balance provided by (8c) indicates that 
the elastic stresses in the solid-fluid interfaces acting on the 
contact line can introduce a resistance to its slippage tangent 
to the capillary tube wall. One would therefore expect the 
component CSfe to be acting downward, such that C s is 
positive, when the contact line (and the meniscus) is pushed 
upward as in the transition from the situation in Figure 2 to 
the state of Figure 3. Conversely, the coefficient C s will be 
negative when the interface is pushed downward. The phe- 
nomenon of hysteresis in both microscopic capillary pres- 
sure and contact angle can be explained on the basis of 
variations in C s and fe, as is discussed at the end of this 
section. 

For this experiment, the curvature of the interface re- 
quires that a pressure difference across the interface be 
established at equilibrium. The interface momentum as the 
transition to a new equilibrium state occurs will be governed 
by (1) and (4). When the new equilibrium state is reached, 
the viscous forces •wn vanish, and the equations reduce to 

V c• y wn = 0 (9a) 

(pn _ p W) = 2 y Wn/R e (9b) 

respectively. This latter relation, commonly called the 
Young-Laplace equation, is the equilibrium relation between 
the pressures on the two sides of an interface. Note that it 
also applies for a flat interface where R = oo such that (7a) 
is recovered. Although the interfacial viscous term on the 
right side of (4) is expected to be negligible for almost all 
practical situations of two-phase flow in capillaries, the 
Young-Laplace equation must be viewed as a relation that 
applies only when the interface is at equilibrium. 

Commonly, the left side of (9b) is called capillary pressure 
p c such that 

pC =pn _pW (10a) 

Then, under the assumption that (9b) holds at all times, the 
following is commonly concluded: 

p c = 7 wn( V v' N) • 2 y •n/R (10b) 

The disadvantage of the definition given in (10a) is that this 
"capillary pressure" cannot be considered as an intrinsic 
property of the interface in a given capillary because it is 
related to the difference in fluid pressures rather than to the 
interface properties. A more appropriate approach is to 
define capillary pressure by (10b). By this formalism, (10a) 
will be obtained as an equilibrium relationship giving the 
balance of forces acting on the interface. Because ?wn 
relates to the change of interfacial free energy per unit 
change in interfacial area, p c as defined in (10b) may be 
viewed as a state variable of the interface. On the other 
hand, p n _ p • is not a state variable of the interface. That 
is, p n _ p • may be varied by external effects causing a 
movement of the interface. When the definition of capillary 
pressure given by (10b) is substituted into (2), the result 
describes the motion of the interface during the dynamic 
change from one state to another and reduces to (10a) when 
equilibrium is reached. 

Equation (10b) is valid for a meniscus of general shape. 
For a spherical meniscus in a vertical tube with a circular 
cross section of radius r, the mean curvature of the meniscus 
is related to the radius of the tube by r = R cos 0 such that 
( 10 b) becomes 

2T wn 
pC = cos 0 (11) 

At this state, no forces act on the contact line in the vertical 
direction. The equilibrium state reached by the meniscus 
within the capillary tube under the influence of interfacial 
forces may be called a state of natural (or neutral) equilib- 
rium. Thus F. ez = 0 and the natural equilibrium equations 
for the contact line are given by (8b) and (8c) with C s set 
equal to zero such that 

•l W IlS 
-•+ 7 wn sin 00 =f0 (12a) 

r 

•/wn cos 00 + yws_ Tns = 0 (12b) 

where the subscript zero indicates the natural state. The 
existence of this equilibrium state has been discussed by 
previous researchers. For example, Bartell and Merrill 
[ 1932] have performed experiments showing that both reced- 
ing and advancing contact angles approach a common equi- 
librium value if the system is allowed to come to rest. 

Equation (12b), known as Young's equation, is commonly 
used to calculate the contact angle at the natural equilibrium 
state from knowledge of the interfacial tension for the three 
interfaces. For all other states, the actual contact angle does 
not have a unique value. It is possible to perturb the 
interface from its natural state to one with slightly different 
curvature such that a range of contact angles is obtained 
without translation of the interface. If one attempts to force 
one fluid to move against the other in a capillary, the 
meniscus and the contact line resist displacement. That is, 
for a sufficiently small change in pressure, the curvature of 
the meniscus will adjust, changing the contact angle, so that 
the change in pressure difference can be accommodated 
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without translation of the contact line. Only with sufficiently 
large changes in p n _ p W will the interface recede or 
advance in the tube. This has been observed in many 
experiments. 

Slattery and Flumerfelt [1982, p. 1-225] give the following 
examples: "Poynting and Thomson [1902] forced mercury 
up a capillary tube and then gradually reduced the pressure. 
Instead of falling, the mercury first adjusted itself to the 
reduced pressure by altering the curvature of the air- 
mercury interface. When the pressure gradient finally grew 
too large, the configuration of the meniscus became unstable 
and the mercury fell a short distance in the tube before 
stopping, repeating the deformation of the interface and 
falling again when a new instability developed. YarnoM 
[1938] saw the same sticking phenomenon as a liquid index 
moved slowly through a glass capillary tube." Also,"... ir- 
regular jerking and sticking of the common line (was) seen by 
Elliott and Riddiford [1967] .... " 

In the context of the experiment discussed here, if one 
infinitesimally decreases the pressure in the n phase from a 
state of natural equilibrium, the curvature of the interface 
will decrease so that the contact angle will increase. This will 
cause solid-fluid interfacial stresses to develop opposing 
movement of the contact line. In this case, C s will be 
positive. An expression for the equilibrium capillary pres- 
sure may be obtained by eliminating 7 •"• and fe by combin- 
ing (8b), (8c), and (11) such that 

2r(Tns_ ,yWS) + 2CsTwns 
pC=(pn_p•) = (13) 

e r2(1 + C s tan 0e) 

Subsequent decrease of p n (and thus of pC) will cause 
further increase of C s and 0e up to some maximum magni- 
tudes. At this point, the bond between the contact line and 
the solid surface will be overcome such that the meniscus 

will start moving upward. 
Similarly, if one disturbs the system from natural equilib- 

rium by infinitesimally increasing the pressure of the n phase 
(or decreasing the pressure in the w phase), the interface will 
tend to move downward in the tube. Thus C s will be 

negative and the interface will stretch such that its curvature 
increases while the contact angle decreases. In this process, 
the capillary pressure will increase. With subsequent in- 
crease of p n _ p •, the interface will continue to deform. 
Eventually, C s will reach a minimum value. Further in- 
crease of p n _ p • will create a force on the contact line that 
will overcome the static bond between the interface and the 

solid along the common line and then the contact line and 
interface will move to a new equilibrium position. 

Each time the interface moves up or down in the capillary 
tube, it will come to rest at a new equilibrium position. Then 
the process of pressure modification causing drainage or 
irnbibition may be repeated at each equilibrium position 
attained. Successive infinitesimal changes in values of p w or 
pn will eventually result in the common line moving along 
the tube wall until a new equilibrium state is obtained. The 
equilibrium states that exist at minimum capillary pressure 
(with minimum C s value and maximum C s magnitude) will 
be identified here as "imbibition equilibria," since they 
occur while experimenting such that the w phase tends to be 
imbibed by the capillary tube. Likewise, equilibrium states 
that exist for a particular location of the contact line at 
maximum capillary pressure will be called "drainage equi- 

pC 

drainage equilibria boundary 

! ..'i i i i ! i i i i i i i i :i i-'i i[ •i i • scanning curves 

imbibition equilibria boundary 

0.0 "'1.0 r- 
fraction of the tube volume filled with the wetting phase 

Fig. 4. Idealized results from raising and lowering the meniscus in 
a vertical capillary tube. 

libria," since they occur while increasing p c such that the w 
phase tends to drain from the capillary tube. An idealized 
plot of the capillary pressure versus location of the common 
line on the tube wall (i.e., the fraction of the tube volume 
filled with wetting phase) appears in Figure 4. 

It is important to emphasize that Figure 4 provides a plot 
of pC at equilibrium states, not while the contact line or 
interfaces are moving. Equilibrium states of the interface, 
including the state of natural equilibrium, may be found at 
values of capillary pressure between the two equilibria 
boundaries. The dashed lines indicated as "scanning 
curves" are indicative of the range of values of p c that may 
be achieved for a fixed position of the contact line by varying 
the pressure of one of the phases by small amounts without 
causing the interface to deform so much that the contact line 
moves. The distance between the two equilibria boundaries 
will depend on the magnitude of the resistance of the solid to 
movement of the contact line across its surface (i.e., the 
maximum variation in the magnitudes of C s that can be 
achieved). Because the capillary pressure is not uniquely 
determined by the location of the contact line in the tube, 
microscopic capillary pressure is said to exhibit hysteresis. 
The primary source of this hysteresis is the fact that the 
stresses in the solid-fluid interfaces will develop such that 
they will always oppose the movement of the contact line 
(and translation of the interface). 

The approach presented here and the consideration of 
solid-fluid interfacial elastic stresses have another advantage 
over the common approach where the contact angle is the 
only factor varying among multiple equilibrium stages. Ne- 
glect of the term CSfe would mean that (12b) would be valid 
for all states. Therefore because T wn , T ws , and T ns are 
commonly taken to be invariant when the meniscus is 
perturbed from its natural equilibrium, only one value of 
0e = 00 could be calculated from the equation. In essence, 
the existence of advancing and receding contact angles 
cannot be explained without taking fluid-solid interfacial 
elastic stresses into account. 

The apparent hysteretic behavior in Figure 4 is commonly 
called "contact angle hysteresis" because the equilibrium 
contact angle is not unique [Hillel, 1980, Miller and Noegi, 
1985; Schiegg, 1986; Soll, 1991]. These authors indicate that 
the main causes of contact angle hysteresis include rough- 
ness of the solid surface, adsorption effects, and surface 
impurities. These phenomena affect the solid-fluid interfacial 
properties accounted for by C s, .),ns, and yws in the theory 
presented here. Soll [1991] measured contact angles for an 
oil-water-glass system and found the static contact angle to 
be 0e = 51.5 ø +- 10- ø- For an air-water-glass system, the 
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hysteresis reported by Soll [1991] was less, with 0e = 34.75 ø 
+- 2. ø. It should be noted that the utility of contact angle in 
the definition of capillary pressure in a tube as given by (11) 
is limited to the case of a vertical tube with circular cross 
section. In all other cases, the contact angle has no constant 
value and no simple relation exists between the meniscus 
curvature and the contact angle. In general, one must 
employ the definition given by (10b). 

Of greatest significance is the fact that the apparent 
hysteresis in Figure 4 is an artifact of the abscissa chosen for 
the plot. Figure 4 shows that a tabulation of pC versus 
volume fraction of the wetting phase does not give a unique 
functional relationship. The difference in p c at the drainage 
and imbibition equilibria boundaries is dependent on the 
range of contact angles that can be sustained by the system 
without causing the contact curve to move. However, based 
on (10b), the capillary pressure is a unique, nonhysteretic 
function of the curvature of the interface between the 
phases. Thus if one were to plot capillary pressure versus 
interfacial area (for a particular capillary tube), no hysteresis 
in the capillary pressure data would be observed. Note also 
that if one were to perform this experiment using a capillary 
tube whose cross-sectional area were a function of position, 
the position of the interface along the axis (i.e., the volume 
fraction of the wetting phase) would also be an important 
factor in determining the degree of apparent hysteresis. 
Recognition of the fact that selection of appropriate indepen- 
dent variables for correct phenomenological characteriza- 
tion of capillary pressure is a crucial element of examination 
of capillary pressure at the macroscale. 

CAPILLARY PRESSURE AT THE MACROSCALE: 
STANDARD APPROACHES 

For the study of flow and transport in porous media, 
equations are needed at a scale larger than the microscale. 
This scale is referred to as the macroscale and the quantities 
modeled are averages over the neighborhood of position of 
interest. This neighborhood is commonly called a represen- 
tative elementary volume (REV) and has a characteristic 
length much larger than that of a typical pore diameter. Thus 
the average values of microscopic functions are taken to be 
representative of measurements that might be taken at a 
porous medium scale. Some degree of rigor in averaging 
from the microscale to the macroscale is often compromised 
in order to try to enhance physical understanding. However, 
failure to explicitly recognize the approximations made can 
cause confusion rather than clarification. 

In the existing literature, by analogy with the equilibrium 
relationship (10a) between the microscale capillary pressure 
and the pressure difference between adjacent phases, the 
macroscopic capillary pressure, is almost universally defined 
as [e.g., Bear, 1972; Scheidegger, 1974; de la Cruz and 
Spanos, 1983; Anderson, 1987; Bear and Verru(#, 1987] 

pc = (p)n _ {p)W (14) 

where pc is the macroscopic capillary pressure, (p)n is the 
pressure of the n phase averaged over the portion of the 
REV containing phase n, and (p) w is the pressure of the w 
phase averaged over the portion of the REV containin• 
phase w. 

At first thought, it might seem possible to obtain this 
relation by averaging its microscopic equilibrium counter- 

pc 'i uilibrium curve 

imbibition equilibrium curve4• 
$r 

$w 

Fig. 5. Standard equilibrium plot of capillary pressure versus 
saturation. 

part, pC = (pn _ pW)e ' given in (10a), over the REV. 
However, (10a) applies only on the interface and thus could 
be averaged only over that interface and not over a volume. 
Thus pressures appearing in the right side of (14) would be 
surface averages rather than averages over the phases. 
These averages are not necessarily equal. Therefore even if 
one extends the equilibrium relation for microscropic capil. 
lary pressure as applying to the dynamic case, (14) will not 
follow from any systematic averaging procedure unless one 
is prepared to employ heuristic assumptions. At best, (14) 
may be viewed as a working statement assigning some 
function to the difference in the (macroscopic) pressures of 
the fluid phases at equilibrium. It must not, however, be 
regarded as a relation providing a balance of forces. Further- 
more, P c as defined by (14) may not be related arbitrarily to 
other thermodynamic properties of the system. 

In the literature, (14) is typically presented as a generally 
applicable "result" valid during all dynamic situations and 
not merely as an equilibrium relationship. Furthermore, to 
explain the behavior of the macroscopic capillary pressure 
pc, appeal is made to the (microscopic) equation (9b). This 
mixing of scales has been an obstacle to a more complete 
understanding of macroscopic capillary pressure. Some of 
the resulting misconceptions will be identified here. 

An empirical relation for pc, measured indirectly as the 
difference between the externally maintained pressures of 
the n and w phases is usually proposed. A functional form 
hypothesizing pc to be a function of the wetting phase 
saturation s w may be stated as 

The explicit functional form is considered to be specific to 
the combination of the pair of fluids and the porous skeleton, 
and also dependent on the medium temperature and the 
chemical composition of the fluids. The function • is als0 
known to exhibit hysteresis in that the equilibrium value of 
pc as a function of s w is found to be dependent on the 
direction of the process (i.e., drainage or imbibition) leading 
up to the equilibrium state. A schematic depiction of the pc 
versus s TM curves is given in Figure 5. 

A few comments concerning Figure 5 are in order before 
proceeding. The curves identified as equilibrium curves in 
Figure 5 are bounds on equilibrium. Equilibrium states may 
also be achieved at points between the two curves. How- 
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ever, if one begins with a saturated medium and performs a 
set of sequential experiments, replacing a little of the w 
phase with the n phase and then waiting for equilibrium to be 
established at each step, the equilibrium states will lie on the 
upper curve. Conversely, if one performs a sequence of 
experiments with imbibition occurring prior to awaiting 
equilibrium, the equilibrium states will lie on the lower 
curve. One can achieve equilibrium states between the two 
curves (i.e., move to equilibrium states on the scanning 
curves) by intermixing drainage and imbibition within the 
sequence of experimental steps. Because equilibrium states 
exist not only along a curve but within a region of p C-s TM 
space, it is more appropriate to call a plot of capillary 
pressure versus saturation a "pc-sw plane" instead of 
"pC-sW curve." Interestingly, the abscissa and ordinate in 
Figure 5 are macroscopic counterparts of the microscopic 
abscissa and ordinates used to generate Figure 4 for a single 
capillary tube. Indeed, the primary change in depicting the 
macroscopic situation for a complex porous medium in 
comparison to a highly simplified microscopic situation 
seems to be that the equilibria boundaries are sloped rather 
than horizontal and the scanning curves are loops rather than 
vertical lines. The equilibrium hysteresis in the pc versus s TM 
plot of Figure 5 is perhaps not a property of the macroscopic 
situation or of system dynamics but is an artifact of the 
choice of independent variable selected for the functional 
form of (15). This fact will be demonstrated subsequently. 

A number of laboratory methods exist for measuring 
capillary pressure-saturation relationships such as that sche- 
matized in Figure 5. They may generally be divided into two 
groups: displacement methods and dynamic methods. In 
both types of methods, the fluid saturation is varied in 
incremental steps. At each step, enough time is allowed for 
an equilibrium to be reached so that saturation will not 
change anymore. The capillary pressure is determined indi- 
rectly from (14) by measuring the pressure of the fluids 
entering and/or leaving the sample. It is important to note 
that the fluid pressures are almost always measured exter- 
nally. 

As is illustrated in Figure 5, it is commonly believed that 
an irreducible wetting phase saturation s r exists for which 
further increase of the externally measured capillary pres- 
sure will not have any effect on the fluid saturation. For- 
really, the capillary pressure is said to go to infinity at the 
wetting phase irreducible saturation. The concept of infinite 
capillary pressure at an asymptotic irreducible saturation is 
questionable for a number of reasons. First, infinitely large 
pressure differences (corresponding to a large positive pres- 
sure of the n phase and/or a large tension in the w phase) are 
physically unrealistic under most natural conditions [Gray 
and Hassanizadeh, 1991b]. Second, the existence of a 
nonzero irreducible saturation is questioned by some re- 
seamhers. Dullien et al. [1986] have observed, in a number 
of experiments, that the wetting phase saturation can be 
reduced far below the reported values of s r when the 
external pressure of the nonwetting phase is increased and 
the experiments are run for a couple of months. Third, 
capillary pressure is actually related to the pressure differ- 
ence between phases within the porous medium, whereas in 
standard measurements, the difference in pressure of fluids 
in reservoirs outside the medium is measured. Numerous 
comments in the literature indicate that externally measured 
capillary pressure near residual or irreducible saturation 

loses significance with respect to the conditions within the 
porous medium [Harris and Morrow, 1964; Morrow and 
Harris, 1965]. The w phase near irreducible saturation (or 
the n phase when s • approaches 1) becomes disconnected 
and thus loses direct hydraulic contact with external reser- 
voirs where pressures are measured. It is quite conceivable 
that under these conditions, the (internal) capillary pressure 
will change very little because, for example at s w --- s r, as 
the pressure of the n phase increases, so would the pressure 
of the wetting phase existing in disconnected domains almost 
totally surrounded by the nonwetting phase. Some of the 
pressure increase would perhaps be compensated for by an 
increase in the curvature of the interface, but such a change 
would be limited by the incompressibility of the wetting 
phase and the geometry of the interstitial spaces. Thus an 
increase in the pressure of the nonwetting phase does not 
result in an appreciable increase in the capillary pressure 
within the porous medium. A similar argument would indi- 
cate that a decrease in the external pressure of the wetting 
phase at small values of s w does not correspond to a rise in 
the capillary pressure. Measurements have, indeed, shown 
that for an unsaturated porous medium despite a decrease in 
external water pressure, "the capillary pressure of an indi- 
vidual element of water will be approximately equal to the 
capillary pressure across the continuous interface at the time 
the element became isolated" [Morrow, 1970, p. 119]. 

RELATION OF CAPILLARY PRESSURE 
TO SYSTEM PROPERTIES 

The traditional definition of capillary pressure in terms of 
the difference in the external pressure of the fluid phases, as 
given by (14), becomes problematical when one tries to 
establish relationships between pc and other medium prop- 
erties. In fact, capillary pressure defined in this manner 
cannot be thermodynamically related to the properties of the 
system because external pressures can be varied arbitrarily. 
Nevertheless, various researchers have tried to provide 
empirical and theoretical explanations of the p c-s w relation- 
ships and dependencies described above. These expres- 
sions, although superficially appealing, are inherently incon- 
sistent and incapable of providing a definitive description of 
capillarity in multiphase systems. In the remainder of this 
section, a number of these typical approaches are described 
and the resulting relationships are discussed. 

The most straightforward approach to obtaining a p C-s w 
relationship has been to simply extrapolate the defining 
relationship for microscopic capillary pressure, (10b), to the 
macroscale: 

pc= 2(•/wn)/(R} (16a) 

A similar approximation is alternatively obtained as an 
extrapolation of (11): 

p c = • cos (0 e) (16b) 
(r) 

where all terms in these two equations are considered to 
"have the meaning of a statistical average taken over the 
void space in the vicinity of a considered point in the porous 
medium" [Bear, 1972, p. 445]. It does not, however, seem 
possible to obtain (16a) from (10b) or (16b) from (11) 
following a rigorous averaging procedure, at least not for a 
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general porous medium. Indeed, since (10b) and (11) apply 
only at interfaces, the interpretation of a statistical average 
of these equations taken over void space is, at best, obscure. 

Besides this fundamental problem, and the question of 
how the average values might relate to other medium prop- 
erties, two additional significant difficulties with these defi- 
nitions exist. First, there is the practical difficulty of 
uniquely defining a macroscopic (as well as a microscopic) 
contact angie and/or radius of curvature of menisci in a 
porous medium. Morrow [1970] finds (16b) applicable only 
to extremely simple geometries. Scheidegger [1974] points 
out that an average interfacial curvature can be defined only 
if the porous medium is made of a regular assemblage of 
capillary tubes, but the large majority of natural and artificial 
porous media are not. Therefore even at the microscopic 
scale, one cannot identify contact angles or curvature 
uniquely. At the macroscopic scale this identification be- 
comes even more complicated because with capillary pres- 
sure specified as a function of saturation, (16a) and (16b) 
would require (0e) and/or (R) to be functions of saturation. 
Scheidegger [1974] finds it a very difficult proposition to 
define an average interfacial curvature as a function of 
saturation. Morrow [1970] points out the practical difficulties 
of treating contact angle as an acceptable macroscale vari- 
able for any quantitative analysis of porous media processes. 
One should acknowledge that microscopic relationships 
such as (10b) are certainly useful aids in studying processes 
in porous media. However, it must also be realized that their 
validity in explaining macroscopic processes is limited. 

A second problem with (16a) and (16b) is that they fail to 
explain the observed behavior of interfaces and traditional 
capillary pressure. According to standard measurements, 
capillary pressure is zero at full saturation and asymptoti- 
cally goes to infinity at the irreducible saturation. Attempts 
are made to explain the rise of the capillary pressure to 
infinity by means of (10b) or (16a) and (16b). It is argued 
that at irreducible saturation, the wetting phase exists only in 
very small pore spaces such that the radius of curvature of 
the menisci are very small; and the capillary pressure will be 
very large. This argument may be acceptable when the 
porous medium is made of an array of capillary tubes 
including microcapillaries of very small radius. However, in 
natural porous media the smallest spaces are formed at the 
points of contact of the grains. Whether the capillary pres- 
sure will approach infinity at these sites is certainly ques- 
tionable. What is more, some researchers have reported that 
at irreducible saturation, the wetting phase forms a thin film 
around the solid grains (see, for example, Morrow [1970], 
Dullien et aI. [1986], Marsily [1986], and Jerauld and Slater 
[1990]). In those situations, the curvature of the interface 
would imply the existence of a negative capillary pressure 
instead of a very large positive one. This is, of course, not 
acceptable. 

Similar inconsistencies are encountered in studying (16a) 
and (16b) when s w approaches 1. Ample experimental 
evidence shows that as a medium becomes saturated, the 
nonwetting phase recedes into larger pore spaces where the 
radius of curvature of the meniscus is relatively large such 
that capillary pressure decreases. At some point, the non- 
wetting phase breaks up and forms isolated globules within 
the wetting phase (see, for example, Bear [1972; Figure 
9.2.3], Scheidegger [1974, Figure 9], and Marsily [1986, 
Figure 2.9]). At that stage, the magnitude of the radius of 

curvature will decrease because a portion of a spherica 
surface is transformed into a closed sphere (with decreasec 
radius). This means, according to (16a), that the capillar3 
pressure, instead of reaching zero near full saturation, .wit 
have to increase. For capillary pressure to become zero. 
(16a) requires the radius of curvature of the meniscus to be 
very large. That certainly is not the case when the n phase is 
being expelled from the porous medium and s w is near 1. 
The discussion illustrates the fact that equations such as 
(16a) or (16b) and the typical behavior of macroscopic 
capillary pressure are inconsistent. 

Another intuitive generalization of microscopic equilib. 
rium equation (9b) is given by Carman [1941], who replaces 
the radius of curvature R with a term m defined to be the 
volume of the column of water in a capillary divided by the 
area of wetted surface of capillary such that 

pn _ p w = 2•/Wn/m (17) 

Carman assumes that (17) is applicable to soils. He sets m = 
e/a, where e is the porosity and a is the specific surface of 
the saturated porous medium and employs this relation to 
find the (minimum) rise of water above the groundwater 
table in a given soil. He assumes that the pressure difference 
between air and water at the top of the capillary fringe, p n _ 
p w is equal to pgh. (It is not clear whether this is considered 
to be true for macroscopic as well as microscopic capillary 
pressure because some confusion between the two scales 
occurs.) With these assumptions, Carman [1941] obtains for 
h, the height of capillary rise in soil: 

h = 2•/wna/pge (18a) 

Then if a = 3 (1 - e)/r, this equation becomes 

6Twn(1 -- e) 
h = (18b) 

pger 

Based on these relations, Scheidegger [1974] suggests the 
following macroscopic relation for capillary pressure: 

6•/ wn(1 - e) 
pc _- pgh = (19) 

er 

Note that there is a fundamental difference between (18b) 
and (19). The latter is meant to be valid throughout the 
unsaturated domain, whereas the former is only an estima- 
tion of the thickness of the capillary fringe. Although (19) 
seems to be independent of saturation, one may reinterpret r 
to be the mean radius of the largest pore space being filled 
with water at a given saturation. In this way, r will be a 
function of saturation, and (19) will then be comparable to 
(16b). Thus it will also suffer from the same drawbacks 
discussed about (16b). 

Another well-known relationship is due to Leverett [1941]: 

pc = •/ w,•( e/k) 1/2J(s w) (20) 

where k is the permeability of the medium and J (s w) is a 
dimensionless function of saturation called the Leverett 
function. This function is basically equivalent to 1/(R)in 
(16a) and 1/m in (17). The advantage of scaling by ( 
according to Leverett [1941], is that J ($w) will be indepen- 
dent of soil properties (at least for a given class of soils such 
as, say, all unconsolidated sandy soils). Therefore once 
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j (s w) is obtained, (20) can be used to provide a capillary 
pressure versus saturation relationship for a given class of 
soils. The form obtained for J (s TM) is very similar to the 
equilibrium curves for pc in Figure 5. 

Although (20) is useful in practical applications, it does not 
provide any insight into the behavior and processes of 
capillarity at the macroscale. At best, (20) should be seen as 
a mathematical correlation of the curves in Figure 5 for a 
given class of softs. 

A generalization of (16b) has been given by Slattery 
[1968]. Employing definition (14), pc = (pn) _ (p w), for 
macroscopic capillary pressure, he proposes that pc is a 
function of a characteristic length of the porous medium L, 
the surface tension 7 wn, the contact angle 0, and saturation 
s w such that 

pc=•(L ' ¾wn 0 s TM) (21) 

Then, he applies the Buckingham-Pi theorem to obtain, for 
geometrically similar porous media: 

pc = cS(O, s w) (22) 
L 

This equation may also be regarded as a generalization of 
(20), allowing for a dependence on contact angle, and thus 
formally including hysteresis in the pC-sW relation. How- 
ever, (22) cannot really serve as a phenomenological equa- 
tion for pc. Together with definition (14) for macroscopic 
capillary pressure, it may be used to determine • (0, s TM) 
from equilibrium experiments. Obviously, • (0, s TM) will 
have the typical form commonly exhibited by capillary 
pressure versus saturation curves. This work seems to be the 
first attempt to incorporate an additional independent vari- 
able to s w in the definition of the functional form of pc. 

Unfortunately, the analysis suffers from using independent 
variables from two different scales, the microscopic contact 
angle and the macroscopic saturation. 

A more fundamental approach to obtain a phenomenolog- 
ical relationship for pc has been to employ principles of 
equilibrium thermodynamics. In doing so, thermodynamic 
relationships known for single continua (thus valid at the 
microscale) are commonly assumed to be equally valid for 
multiphase media at the macroscale. For example, Leverett 
[I941] considers an element of sand containing only water 
and oil, in hydraulic contact with a water reservoir with a 
zero curvature surface, both being at the same horizontal 
level. For the water, the partial change of Gibbs free energy 
with pressure is 

•SGW/tSP = V TM (23) 

where V TM is the volume of water transferred from the 

reservoir to the porous medium. Leverett argues that be- 
cause the water is substantially incompressible, (23) may be 
integrated to obtain 

G•'- G•' = VW(P2 - P1) (24a) 

w 

G•'- G• 
pc = (24b) 

V w 

where P2 is the pressure of water in the reservoir assumed to 
be equal to the oil pressure and P1 is the pressure of water 
in the sand element. Arguing that "since pc is the free 
energy increase (the isothermal reversible work necessary) 
accompanying the transfer of a unit volume of water from 
the sand to the zero curvature reservoir at the same level" 

[Levererr, 1941, p. 161], he then proposes 

pc = &•wis v TM (25a) 

where Xw is the Helmholtz free energy of the water. If one 
introduces free energy per unit mass of water A w, (25a) may 
be written as 

iSA w 
pc = sWp w (25b) 

•s w 

where V TM is replaced by esWV and jw = esWpWAwV. 
Later in this work, (25b) will be shown to contain only one 
of the terms making up the macroscopic thermodynamic 
relationship for capillary pressure. The important fact is that 
water in a porous medium does not form a closed system 
because it exchanges energy with interfaces and other 
phases. Therefore integration of (23) to obtain (24a) is not 
permissible. 

This fact has been recognized by Morrow [1970], who 
applied the first law of thermodynamics to a system similar 
to that considered by Levererr [1941]. Equating the external 
work done on the porous medium to the change in free 
energy of the medium, he obtains [Morrow, 1970, equation 
(67)1] 

pc = _dA/dV TM (26) 

where A is the Helmholtz energy of all phases and interfaces 
and V w is the volume of water in the porous medium. From 
the energy balance for the porous medium under isothermal 
conditions when compression effects are negligible, one 
obtains [Morrow, 1970] 

dA = 3' wn dtywn + •ns d•yns + y ws dc7•,s (27) 

where c7 "t• is the total area of a/3 interface in the porous 
medium. Note that in this relation, Morrow [1970] does not 
include any change in free energy of bulk phases. Subse- 
quently, he sets dff ns = -dc7 TM and T ns -•,ws = Twn 
cos 0e to obtain 

dA (da wn da ns _ dV -""• = pc = _,y wn • d Vw + • cos 0 e (28) 
Note that the use of the relationship (12b) with the natural 
state considered to be the equilibrium state, ¾ns _ Tws = 
ywn cos 0e, is somewhat inconsistent because of mixing of 
scales involved. Morrow [1970] points out that these rela- 
tionships may not be directly applied to a porous medium 
because the displacement of interfaces and volume changes 
there, do not take place reversibly. He states "When given 
volumes of fluid are cornmingled in a complicated network of 
nonuniform pores, typical of a porous media, many stable 
fluid configurations are possible. Unlike many thermody- 
namic systems which are stable at a single minimum free 
energy, there will be many local minima of free energy, and 
the global minimum for the system has no special signifi- 
cance [Morrow, 1970, p. 113]. An important conclusion one 
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may draw from this observation is that in a given porous 
medium containing two fluid phases, saturation and interfa- 
cial areas are independent variables. That is, many local 
minima of energy may occur at a given saturation because a 
range of interfacial areas is possible, depending on the nature 
and constitution of phases and interfaces. For example, if 
the w phase spreads indefinitely over the surfaces of soil 
particles, even at very small saturations, the wn interfacial 
area may be large. Otherwise, the interfacial area may be 
small at low saturations. In light of these observations, the 
fight side of (28) evidently may be written in terms of partial 
derivatives only if the energy of the porous medium is kept 
constant. That is, 

pc= ywn (oaWn I ywn {Oan, 1 
cos 0e 

(29) 

where a a• is the area of a/3 interfaces per unit volume of the 
porous medium, and A a and A • are free energy per unit 
volume of the phases and interfaces of the porous medium, 
respectively. (Recall, still, the inconsistency involved in (29) 
due to the presence of a microscopic equilibrium contact 
angie 0e-) Note that (25b) (due to Levererr [1941]) and (29) 
are mutually exclusive. It will be shown later that a general 
relationship for macroscopic capillary pressure contains the 
terms appearing in both (25 b) and (29). 

Relationships for capillary pressure are also found in 
mixture theory approaches to describing multiphase flow in 
porous media. A peculiar aspect of most mixture theory 
models of a multiphase system is that the system is assumed 
to be composed of immiscible fluid and solid phases but no 
account is made for interfaces. In most of these theories, 
first a relationship is found for thermodynamic pressure of 
fluid phases, and then capillary pressure is simply defined to 
be equal to the difference in fluid pressures [e.g., Bowen, 
1982; Allen, 1986; Thigpen and Berryman, 1985]. Some 
typical relationships include the following from Bowen 
[19821' 

1 0A 
pc = (30a) 

• OS TM 

where A is the sum of the Helmholtz free energies of all 
phases per unit volume of the porous medium, and the 
expression from Allen [1986]: 

OA • 

pc = _ E s•p • a = w, n (30b) Os a 

A fundamental inconsistency in these works is the fact 
that no interfaces and no interface properties are included in 
the underlying theory. These, of course, are necessary if one 
is to admit the existence of capillary pressure. Interfacial 
properties do not appear either in conservation laws or in 
constitutive equations. For example, the (macroscopic) 
force exerted by phase w on phase n is equal to the negative 
of force exerted by phase n on phase w, as if there is no 
surface tension or any other interfacial force present (see 
Hassanizadeh and Gray [1990] for additional discussion). A 
more rigorous approach has been developed by Marie [1981, 
1982], Kalaydjian [1987], and Pavone [!989, 1990]. 

Marle [1981] develops a continuum description of the 
porous medium and, based on a nonequilibrium formulation 

a Wll 

3r 1.0 
$w 

Fig. 6. Schematic diagram of wn interfacial area per unit volume 
versus saturation as would be re•luired by (7•2b). 

of entropy production for the system, obtains the following 
relationship for pressure differences between nonwetting 
and wetting phases: 

05 w 
{p)n _ {p)W = _Twnr wn _ eC (30c) Ot 

where C is a material constant and r wn is the macroscopic 
curvature of interfaces (some average of the microscopic 
curvature of interfaces). 

An alternative expression has been obtained by KaIayd- 
jian [1987], who also employs Marie's method 

05 w 
pc= (p)n _ (p)W= ywnrwn f_ eC (31) 

Ot 

where f is a function characterizing the internal structure of 
the porous medium, and is defined st•ch that [Kalaydjian, 
1987] 

OaWn/Ot 

eOsW/Ot (32a) 

where a wn is the area of wn interfaces per unit volume of the 
porous medium. 

This definition of f is undesirable because it relates a 
medium property to the time rate of change of some state 
variables. In any case, one may combine (31) and (32a) and 
write as an approximation: 

Oa wn Os w 
pc = _Twn Ce • (32b) 

cos TM Ot 

For oawn/os TM to be consistent with the capillary pressure 
versus saturation curve of Figure 5, the dependence of a w• 
on s w would have to be similar to that depicted in Figure 6. 
However, as saturation decreases to near residual value, one 
would expect the Wn-interfacial area per unit volume to also 
decrease. This is in clear violation of the requirements of 
(32b). Alternatively, one could suggest that pc as defined by 
(32b) is not the same function depicted in Figure 5. 

Payone [1989], whose approach is based on the work of 
Marie [1981], provides an extension of (32b) in the form 

COS 0 Oa wn O(es W) 
wn {33) pC= ywn Y rl - 

• O(es TM) Ot 
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where •t is a characteristic length, 0 is the contact angle, the 
coetficient r/ is bounded by r• -> 0, and pc is called the 
dynamic capillary pressure equal to the pressure difference 
between the nonwetting and wetting phases. Under equilib- 
rium conditions, where O(esW)/Ot = 0, (33) resembles 
relation (28) suggested by Morrow [1970]. The presence of 
the contact angie, a microscopic quantity, in this macro- 
scopic expression is troublesome. Pavone [1989] identifies 
the first term on the right side of (33) as the pressure required 
to move the contact line and identifies the sum of the first 
two terms as the static capillary pressure. Thus at equilib- 
rium, the static and dynamic capillary pressures will be 
equal. 

At this point, the search for a consistent treatment of 
macroscopic capillary pressure seemingly has provided 
some insights but many inconsistencies and contrasting 
viewpoints. Although the relationships provided in the liter- 
ature suggest a connection between macroscopic capillary 
pressure and the change in Helmholtz free energy due to 
saturation change, they provide conflicting results. One 
relation contains the work done by (or the change in energy 
of) only wn interfaces, whereas another relation includes the 
work of all interfaces. Examination of other formulations 
reveals lack of agreement as to whether macroscopic capil- 
!ary pressure should be related to the change in energy of 
only the wetting phase, the change in energy of only the fluid 
phases, or the change in energy of all phases. It will be 
shown in the next section that these relations are, indeed, all 
incomplete although they do contain elements of a proper 
formulation. 

CAPILLARY PRESSURE AT THE MACROSCALE' 

PROPOSED APPROACH 

For progress to be made in the understanding and model- 
ing of multiphase flows, the definition of macroscopic capil- 
lary pressure must be developed in the framework of a sound 
thermodynamic theory rather than being given arbitrarily. 
One must provide macroscopic balance laws and appropriate 
constitutive relationships for interfacial as well as phase 
properties of the porous medium. Capillary pressure must be 
independent of external forces and should rely on the 
intrinsic properties of the multiphase system, particularly 
those of the interfaces. Additionally, constitutive hypothe- 
ses must be made consistently and within a framework that 
will allow expansion of the theory as additional complex and 
important processes are included. 

In a number of recent works, Gray and Hassanizadeh 
[1989, 1991a, b] and Hassanizadeh and Gray [1990] have 
produced a thermodynamic theory of two-phase flow in a 
porous medium which has the aforementioned characteris- 

tics. The main constitutive hypothesis in this theory is the 
dependence of the Helmholtz free energy functions for the 
phases and interfaces on state variables such as mass den- 

sity, temperature, saturation, porosity, interfacial area den- 
sity, and the solid phase strain tensor. The specific forms of 
the constitutive equations are [Gray and Hassanizadeh, 
1991a] 

A n=An(p n T, a wn, a ns s w e) 

A w = A •*'(9 w, T, a wn a ws w , ,8 , E) 

A s=As(p s T, a "s a ws, E s, e) 

(34a) 

(34b) 

(34c) 

Aat3=A•(F• T, e a • s •") O• "WF/, 14'S, HS 
(34d) 

where 

A • Helmholtz free energy of phase a per unit mass of 
phase a; 

A • Helmholtz free energy of interface a/3 per unit mass 
of interface 

p• mass of a phase per unit volume of a phase; 
T temperature; 
e porosity; 

s • saturation of fluid phase a; 
a •g area of a/3 interface per unit volume of porous 

medium; 
œs solid phase strain tensor; 

F •g excess mass of the a/3 interface per unit area. 
The choice of independent variables in the preceding equa- 
tions is based on the expected behavior of the phases 
inferred from past experience. For example, the interfacial 
area of the a phase with the 
phase, a•g/es •, is considered to be important to the deter- 
mination of the state of the system (see, for example, 
Crawford and Hoover [ 1966]). Also, it is known that a given 
volume of a fluid in a porous medium may attain various 
microscopic distributions in the pores, depending on the 
energy state of phases and interfaces. Thus one might expect 
the free energy of a phase to depend on such groups as 
a•/es TM and aal3/esn. However, in the conservation laws, 
e, a •t•, and s • appear separately rather than in these 
combinations. Therefore it is convenient to formulate the 

constitutive theory in terms of e, a •g, and s • separately. 
The explicit inclusion of interfaces and interfacial proper- 

ties in the proposed theory is essential because they are 
known to have a significant role in determining the thermo- 
dynamic state of the whole system. Scheidegger [1974] 
states that hysteresis (in capillary pressure) seems to be 
caused by instability of interface configurations. Dussan 
[1987] remarks that it is somewhat surprising that such a 
small amount of interfacial material can have such a substan- 

tial influence on the •tate of the entire body of the fluid. 
Based on constitutive relations (34a) through (34d) and 

application of the Coleman and Noll method of exploitation 
of entropy inequality, Gray and Hassanizadeh [1991a] 
show that the following combination of terms contributes to 
the entropy production such that in the absence of other 
thermodynamic forces, one must have 

( aA •" aA n _3w e(pn_ pw) + es,.p},, __+ es,,pn 
Os w 06' w 

• OSW ) •0 (35) 
where • w is the material time derivative of the wetting phase 
saturation observed when moving with the solid phase, pn is 
the macroscopic pressure of the n phase, and P**' is the 
macroscopic pressure of the w phase. The macroscopic 
pressures are obtained, not as some averages of microscopic 
pressures, but directly at the macroscfle through the ther- 
modynamic definition [Hassanizadeh and Gray, 1990] 
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OA • 
p•=(p•)2 • a =w, n (36) 

Op 

In (35), p n _ pw is the resultant of external forces causing 
the movement of fluids in the porous medium. This move- 
ment is opposed (or assisted) by capillary forces. At equi- 
librium, the capillary forces will balance P n _ p •,. Based on 
this consideration, (35) clearly suggests that macroscopic 
capillary pressure be defined thermodynamically by 

OA w OA n al3F"t• OA a• 
pc = _8wp w snpn • a OS w Os w • Os w 

(37) 

According to this definition, macroscopic capillary pressure 
is related to the change in the free energy of phases and 
interfaces as a result of change in the saturation. Inequality 
(35) explains the spontaneity of the imbibition process. 
According to this equation, the free energy of the system 
must decrease for the saturation of the wetting phase to 
increase (i.e., for •w > 0); this would be a spontaneous 
process. On the other hand, to decrease the wetting phase 
saturation (• < 0), the energy of the system must be 
increased. This will not be a spontaneous process and will 
require an increase in P• - P TM such that work is done on 
the system. Note that dependence of pc on the solid phase 
free energy does not appear in (37) because the solid phase 
free energy is assumed to be independent of saturation in 
(34c). Fu•hermore, note that by application of the chain 
m!e to (34d), one obtains 

OS w ]a•,T,,,F• 

= - (38) 

so that (37) may also be written as 

OA TM OA n 
pc= _swp w snp n 

Os TM OS w 

T,e,F a• , A "t • 

(39) 

•t• is the macroscopic surface tension of the where 3/ 
interface defined thermodynamically at the macroscale as 
[Hassanizadeh and Gray, 1990] 

OA at• OA •l• 
yat•= _(Fa/•)2 = at• at• (40) 0-•-' •' -a F • 0a 

Examination of (37) and (39) clarifies the discrepancies 
discussed previously concerning the contributions of various 
energy changes to the capillary pressure function. It appears 
that none of the relations discussed in the previous section 
contain all relevant energy changes. In other words, those 
relations are all special cases of definition (37) or (39) for 
capillary pressure. 

According to the approach advocated here, capillary pres- 
sure provides an indication of the tendency of the system to 
admit a rise in the saturation of the wetting phase when 

temperature, fluid densities, medium porosity, interfacial 
mass density, and interface area per unit volume are held 

constant. Macroscopic capillary pressure is thus defined solely as an intrinsic property of the system, in the same way 
that (10b) defines microscopic capillary pressure as an 
intrinsic property of the interface. Relations (34a) through 
(34d), in conjunction with (37), indicate that macroscopic 
capillary pressure is a function of fluid densities, tempera. 
ture, medium porosity, specific interfacial areas, interfacial 
mass densities, and fluid saturation: 

p•= •(p• • ,•n F• •,• w•, •s •,• ,p ,T,F , ,F ,a a ,a ,e,s •') 
. 

(41) 

Note that P c is only a measure of the tendency of the system 
to undergo a change in saturation. Whether this change will 
actually occur depends, of course, on the overall state of the 
system, and in particular, the pressure distribution of the 
two fluids. This is mathematically stated by the residual 
entropy inequality (35) which, after substitution of (37), may 
alternatively be written 

_gw[(pn _ p w) _ pc] _> 0 (42) 

This inequality requires that if P" - P w > p c then 3•' must 
be negative. In other words, if p,z _ p w is greater than the 
capillary pressure, the system will undergo drainage. On the 
other hand, (42)indicates that if pn _ p,•.> p•' then •w 
must be positive. Thus imbibition occurs when p n _ p•. is 
less than the capillary pressure. Only at equilibrium, when 
5"' = 0 and no change in saturation is occurring, will pn _ 
pw = pc. 

This discussion suggests that examination of an approxi- 
mate constitutive equation for •'" may help provide some 
additional insight. For a linear theory, the following approx- 
imation for i •' may be written' 

•"'= -L"'[(Pn _ pw) _ pc] (43) 

where L TM is a nonnegative material coefficient. Both the 
general equation (42) and approximation (43) suggest that at 
a given point in the system and at any given time, saturation 
will change locally in order to restore equilibrium and the 
equivalence between P'• - P"' and pc. Ample experimental 
evidence exists that pC-sW curves are also a function ofi w. 

In an experiment where the drainage is fast, the measured 
value of P '• - P w is larger than the value of pc determined 
under very slow (i.e., near static) drainage experiments 
[Davidson et al., 1966; Toppet al., 1967; Smiles et al., 1971]. 
This is in full agreement with (43). The coefficient L'" may be 
interpreted as a measure of the speed at which the change in 
saturation takes place. If L"' is found to be very large, 
equivalence between P• - P TM and P•' will be reestablished 
virtually instantaneously after equilibrium is disturbed. Thus 
if one uses the commonly employed relation 

pc. = pn _ pw 

as the definition of macroscopic capillary pressure, even for 
a system not at equilibrium, one is intrinsically assuming that 
any actual disturbances in this equivalence are eliminated 
almost instantaneously because of the system dynamics 
(i.e., L TM >> 0 in the linearized case). System dynamics such 
as these are probably achieved only for porous media with 
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good permeability. As permeability decreases, the applica- 
bility of (44) will become suspect. In cases where permeabil- 
ity of the medium to the wetting phase is very low, (44) will 
apply only at equilibrium and one probably needs to employ 
an equation such as (43) to correctly model system dynam- 
ics. 

Of additional interest is the fact that the definition (37) or 
(39) provides a thermodynamic statement of the "heat of 
wetting." It is known that the decrease in the Helmholtz free 
energy of a porous medium when entered by a wetting fluid 
is liberated as heat [Scheidegger, 1974]. Equation (37) indi- 
cates that the heat of wetting per unit volume of the porous 
medium for an infinitesimal change in saturation will be 
•pCds w. Thus the total heat of wetting for a porous medium 
with finite volume V where saturation changes from s •' to s •' 
will be 

• = epCds w dV (45) 

Another important result that can be deduced from (37) 
regards the commonly employed form of the capillary pres- 
sure versus saturation curve of Figure 5. As was mentioned 
earlier, the rise of capillary pressure to infinity at low 
saturations is physically unacceptable. This statement is 
supported by (37). The Helmholtz free energies per unit 
mass of the phases and interfaces are bounded. Thus as the 
saturation of a phase approaches an irreducible value (or 
even zero), one would expect terms such as s •OA •/Os • and 
a•gOA •/•/Os w to also remain bounded. Other terms, namely, 
•s•p • and a•t•F •t•, denote the mass of phase a and inter- 
face a/• per unit volume of the porous medium, and they also 
remain finite. Therefore, (37) shows the concept that capil- 
lary pressure may rise to infinity to be invalid. 

Equations (37) and (39) deserve further study to reveal 
information about the properly defined capillary pressure 
function. In applying (44), one must realize that pn and P•' 
are the macroscopic pressure values at a given location 
within the porous medium. They are not always in hydraulic 
equilibrium with values of pressure applied outside the 
porous medium. This is especially true for a phase which 
exists at very low saturations or in very low permeability 
porous media. It seems reasonable that the slope of the 
capillary pressure versus saturation curve remains small 
when a phase becomes microscopically disconnected at low 
saturations. 

"HYSTERESIS" IN MACROSCOPIC CAPILLARY PRESSURE 

An important feature of standard macroscopic capillary 
pressure curves is the hysteresis loop and scanning curves as 
discussed in conjunction with Figure 5. Practically speaking, 
there are virtually an infinite number of hysteretic scanning 
curve loops contained within the primary hysteresis loop 
[Morrow and Harris, 1965]. Hysteresis in the capillary 
pressure versus saturation relationship is attributed to 
causes such as the geometric nonuniformity of the individual 
pores, the hysteresis in contact angle, entrapped air, swell- 
ing, shrinkage, and aging phenomena [Hillel, 1980]. How- 
ever, the most widely discussed explanations of hysteresis 
are the so-called "ink-bottle effect" and "Haines jumps" 
[Bear, 1972; Corey, 1977; Bear, 1979; Hillel, 1980; Green- 
korn, 1983] which are actually one and the same effect. 

pc 
curve 

:: 

imbibition equilibrium curve4/'• 
$r 

S w 

Fig. 7. Schematized pc versus s w curve including Haines jump 
effects [after Morrow, 1970]. 

According to these explanations, interfaces undergo abrupt 
jumps during a drainage process, so that a higher capillary 
pressure will prevail during drainage than imbibition. 
Whether such abrupt movement of interfaces are, indeed, 
responsible for the phenomenon of hysteresis is strongly 
doubtful. Proponents of this explanatory theory have not 
produced incontrovertible proof of it. On the contrary, 
careful experiments by Crawford and Hoover [1966] and 
Morrow [1970] have shown that the abrupt movement of 
interfaces causes very small fluctuations in capillary pres- 
sure with amplitudes much smaller than the difference mea- 
sured between drainage and imbibition curves of a hysteresis 
loop at a given saturation. What is more, Haines jumps occur 
not only during drainage but also during imbibition such that 
aPc versus s TM graph showing the effect of Haines jumps will 
look like Figure 7. 

Regardless of the mechanisms they employ to explain 
hysteresis, most researchers agree that hysteresis is related 
to the configuration and distribution of interfaces. It is 
widely recognized that many different interface configura- 
tions, and thus a range of interfacial areas, are possible for a 
given saturation. Based on estimates of capillary pressure, 
surface areas, and pore volume for a simplified porous 
medium, Craaford and Hoover [1966] find that the ratio of 
surface area to volume would be an important parameter in 
determining the energetic state of the system. Furthermore, 
consideration of the microscale situation, as in Figure 4, 
indicates that apparent hysteresis may arise because of the 
choice of s w as the only independent variable. It seems that 
the size of the hysteresis loop is perhaps a measure of the 
lack of understanding of the processes actually occurring 
rather than an accurate depiction of multiphase behavior in 
porous media. 

The approach proposed here is to obtain a more appropri- 
ate representation of the functional dependence of capillary 
pressure. Equation (41) indicates that capillary pressure 
should be represented as a function of 11 independent 
variables. However, this situation may be simplified for 
many cases of practical interest. Consider the case where the 
phase densities, interfacial mass densities, temperature, and 
matrix porosity may be considered constant. Then (41) 
simplifies to the form 

pc = •*(a Wn anS ws •,) , , a , s (46) 
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(a) (b) 

a wn $w 

Fig. 8. Idealized projections of capillary pressure function onto (a) s TM and (b) pc planes. 

For many soils, the total specific interfacial area of the 
solid-fluid interfaces, a ns + a ws will be a constant. Addi- 
tionally, except at very low saturations, the wetting phase 
may be considered to completely coat the solid phase such 
that a ns = 0 and thus a ws will be a constant. This further 
reduces the functional dependence indicated in (46) such that 
a reasonably streamlined but still rather general functional 
form for capillary pressure would be 

pc = •**(a wn, s w) (47) 

With this functional form, instead of working with a pc 
versus s w relationship in the form of a two-dimensional 
"hysteresis plane," one should model capillarity as a three- 
dimensional surface. That is to say, capillary pressure must 
be recognized as a function of two independent variables. 
The hysteresis plane may be interpreted as nothing but the 
projection of the pC-sW-aWn surface onto the P•'-s"' plane. 
Projections of that surface onto P C-a ,,,n and a Wn-s **' planes 
are expected to provide "hysteresis loops" similar to those 
schematized in Figures 8a and 8b, respectively. Of course, 
the sizes of the loops in Figures 8a and 8b and the values of 
ordinates and abscissa where intersection with the axes 

occurs requires experimental study. 

CONCLUSION 

Microscopic equations of momentum are employed to 
describe the movement of a meniscus and a contact line 

formed in a capillary tube. The fluid-fluid interface is mod- 
eled as a Newtonian membrane, while the solid-fluid inter- 
faces are modeled as elastic surfaces. The well-known 

Young-Laplace equation for an interface p n _ pW = 
2'yWn/R is derived as the equilibrium equation of momentum 
for the meniscus. The corresponding equilibrium momentum 
equation for the contact line is the Young equation, •,wn cos 0 
._ .)/ns _ 3/ws. An expression for the microscopic capillary 
pressure, valid also for nonequilibrium conditions, is given 
as pc = 23/wn(vtr . N). Evidence is presented that the 
commonly employed equation relating the capillary pressure 
to the pressure in the bulk phases, p c = p n _ p w, must be 
viewed as an equilibrium force balance and not as a defini- 
tion of pc. Hysteresis in the microscopic capillary pressure 
and contact angle is shown to be related to the elastic forces 

developed within the solid-fluid interfaces that act upon the 
contact line and resist its movement within the tube. 

The standard approaches for describing macroscale capil- 
lary pressure are reviewed. Some approaches are argued to 
be simple extensions of microscale concepts and equations. 
As a result, inconsistencies arise in the functional forms 
suggested for Pc. Although the relationships provided in the 
literature suggest a connection between macroscopic capil- 
lary pressure and the change in Helmholtz free energy due to 
saturation change, they provide conflicting results. One 
relation contains the work done by (or the change in energy 
of) only fluid-fluid interfaces, whereas another relation in- 
cludes the work of all interfaces. Still other approaches do 
not contain any terms related to the change in energy of the 
interfaces, but instead suggest a dependence on the change 
in free energy of the bulk phases. An alternative approach to 
describing macroscale capillary pressure is proposed, and it 
is found that capillary pressure is related to the change in 
free energy of the two fluid phases and all three interfaces 
that accompanies a change in saturation. Capillary pressure 
is seen to be a function of the specific area of the fluid-fluid 
interface per unit volume a wn, as well as of saturation s w. 
The commonly depicted p c versus s TM hysteresis loop should 
be seen as a projection of the p C-s W-a •n surface onto the 
p C-s •*' plane. 

APPENDIX A: MICROSCALE MOMENTUM BALANCE 

EQUATIONS FOR A SURFACE 

A classic presentation of the momentum balance equation 
for a surface was provided by Scriven [1960]. Additional 
insights appear in the works by Moeckel [1975] and Slatten.' 
[1980]. An alternative derivation of this equation that inte- 
grates the three-dimensional momentum equation over an 
infinitesimal layer of fluid has been presented by Gray et aI. 
[1993]. The microscopic momentum equation for a surface is 
obtained as 

Dc•U 

Dt 
rg-V ø'. $ + N-[p(v - U)(v - U) - Tll = 0 

•A1) 

where 
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interface 

Fig. A1. Unit normal vector N on a/3 interface. 

F excess mass of the interface (with units of mass 
per unit area); 

g acceleration due to body forces; 
U three-dimensional velocity of the interface; 
N unit vector normal to the interface pointing into 

the a phase as in Figure A1; 
V • surface divergence operator, V • = V - NN- V; 

$ stress tensor for the interface; 
D•/Dt surface material derivative operator; 

v velocity of the adjacent phase at the interface; 
T stress tensor for the phases adjacent to the 

interface; 
IFIl jump in the quantity F, IF] = F a - F t•. 

The last term on the left side of (A1) accounts for momentum 
transfer to the interface from the adjacent phases. 

In the present study, (A1) will be simplified for consider- 
ation of the case where the inertial and body force terms are 
unimportant. Furthermore, mass transfer between the sur- 
rounding phases and the interface will be neglected. Thus 
with reference to Figure A1, the momentum balance for the 
interface becomes 

_Va. $at• _ N-IT a - T t•] = 0 (A2) 

where the superscripts a and/3 refer to the phases on each 
side of the interface, respectively, and the stress tensors for 
the bulk phases are evaluated at the interface. Constitutive 
relations are needed for the stress tensors appearing in (A2). 

First, consider the bulk fluid phases and the fluid-fluid 
interface to be isotropic and Newtonian. Thus the stress 
tensors may be written 

$wn = .y WnlO- + ,rwn (A3a) 

T a=-pal+'ra a =w, n (A3b) 

where 

,ywn interfacial tension of the interface between the w 
and n phases; 

p• pressure in the a phase; 
'r s viscous Newtonian stress tensor for phase a; 

•wn viscous Newtonian stress tensor for the wn 
interface; 

I identity tensor; 
I (' projected surficial identity tensor, I - NN. 

Substitution of (A3a) and (A3b) into (A2) yields 

V a . (TWnlS) + V•r. a. wn _ N(pW _ pn) + N' (n 'w - n 'n) = 0 
(A4) 

The main focus of this work is the interface. For conve- 
nience, then, the viscous effects of the phases interacting 
with the interface will be neglected. With this simplification 

employed in (A4), expansion of the first term provides a form 
that will be particularly useful in subsequent discussions' 

•7tr'Y wn -- NTwn(v•r ' N) + Vs ''c wn - N(pW - p n) =0 

(AS) 
This momentum balance equation will be applied to micro- 
scale interfaces to explain the concept of capillary pressure. 
In fact, it is the contention here that the proper definition of 
microscopic capillary pressure, a definition that holds for 
both dynamic and equilibrium states, is given as 

p c = ? wn(V c•. N) (A6) 

Note that this definition depends only on properties of the 
interface, its interfacial tension and a geometric factor, such 
that capillary pressure is an intrinsic property of the inter- 
face. 

Next, consider the solid-fluid interface and assume it to be 
isotropic and linearly elastic. Therefore the stress tensor for 
these interfaces may be written 

S •s = •/•s I v + •. as[ (V ve as) + (V •re as) r] 

+ (Xas- •as)(V• ' e•S)l , a = w, n (A7) 

where e •s is the surface displacement vector for the as 
interface, •/•s is the interfacial tension of the as interface, 
and X as and ,/as are elastic constants. This stress tensor, 
along with that of (A3a), will be used in determining the 
forces acting on a contact line. 

APPENDIX B' MICROSCALE MOMENTUM BALANCE 

EQUATION FOR A CONTACT LINE 

The momentum balance equation for a curve formed as 
the locus where three phase interfaces come together in 
space may be inferred from (A1), may be derived by per- 
forming a momentum balance on an element of the curve, or 
may be obtained by integrating the three dimensional mo- 
mentum balance equation using the transport and divergence 
theorems of Gray et al. [1993]. The equation that results is 

D Ca 
F c FCg- V c' C 

Dt 

+ v*. [p(u - U)(u - U) - S]l•dg•s = 0 (B1) 

where 

F c excess mass of the contact line (with units of 
mass per unit length); 

u three-dimensional velocity of the contact line; 
A unit vector tangent to the contact line; 

V c curvilineal divergence operator, equal to AA. V; 
C stress tensor for the contact line; 

DC/Dt material derivative operator for the contact line; 
v* normal to the contact line pointing outward to 

surfaces interacting with the line along its edges. 

The last term on the left side of (B 1) accounts for momentum 
transfer to the contact curve from the adjacent phase inter- 
faces. At a given point on the curve, three different v* exist, 
one corresponding to each surface. Note that A- v* and A. N, 
where N has been defined as the normal to the interface 

intersecting the contact curve, will equal zero. Furthermore, 
g, U, and S have been defined in Appendix A. 
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ns interface ••vn•,•,• wns contact line 
n phase Vwn 

ws 

wn interface 

w phase 

s phase 

ws interface 

Fig. B1. Intersection of phases n, w, and s at a contact line. 

As with the surface momentum equation, (B 1) will be. 
simplified for consideration of the case where the inertial and 
body force terms are unimportant to the curve movement. 
Furthermore, mass transfer between the adjacent interfaces 
and the contact curve will be neglected. Thus with reference 
to Figure B1, the momentum balance for the contact line 
becomes 

--• 7c C- l•wn S wn ß S ws ß S "s = 0 (B2) . . • l•ws • l•ns 

Constitutive relations for the interfacial stresses are given by 
(A3a) and (A7). If the contact line is considered to be 
isotropic and inviscid, the stress tensor (3 will have the form 

C = -TwnsAA (B3) 

where T wns is the contact curve compression. As a simpli- 
fication, the viscous effects of the interfaces interacting with 
the contact curve under dynamic conditions will be ne- 
glected. With this condition employed in (A3a), substitution 
of (A3a), (A 7), and (B3) into (B2) yields 

V c. (TwnsAA) - VwnT wn - •,•,s•, "'s - VnsT ns -- F = 0 

(B4) 

where 

= it ß [(v + (v r] w$ 

+ (x n e ah, [(v -- ß l•ws + k ns ' 

+ (v r] 

+ (x • - • •) (V •. e •)v • (BS) 

The vector F accounts for the elastic deformation of the 
solid-fluid surfaces as a result of the pull of the meniscus on 
the contact line. Expansion of the first term in (B4) provides 
a form for the contact line analogous to (A5) obtained for the 
wn surface: 

VcT wns + TwnsA . VcA - VwnT wn - 1,•wsT ws - VnsT ns -- F 

(B6) 

After determination of the material coefficients, simulta- 
neous solution of (B6) with (AS) (along with the appropriate 
equations such that the pressures in the phases can be 
determined) would be necessary to describe the dynamics 
and geometry of the interface between the two fluid phases. 
Additionally, the interactive force between the contact line 
and the surface F would also have to be known. Thus full 

description of the dynamics of a phase interface is very 
complex. 
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