
Specific interfacial area: The missing state variable in two-phase
flow equations?

V. Joekar-Niasar1 and S. M. Hassanizadeh1

Received 11 March 2010; revised 17 January 2011; accepted 31 January 2011; published 12 May 2011.

[1] Classical Darcy’s equation for multiphase flow assumes that gravity and the gradient in
fluid pressure are the only driving forces and resistance to the flow is parameterized by
(relative) permeability as a function of saturation. It is conceivable that, in multiphase flow,
other driving forces may also exist. This would mean that such nonequilibrium effects are
lumped into a permeability coefficient. Indeed, many studies have shown that the relative
permeability coefficient generally depends not only on saturation but also on dynamics of
the system. Through the application of rational thermodynamics, a theory of two-phase flow
had been developed in which interfacial areas were introduced as separate thermodynamic
entities and their macroscale effects were explicitly included. This theory includes new
driving forces whose significance needs still to be established. To study new terms in the
theory, we employ a dynamic pore network model called DYPOSIT. A long pore network
(several representative elementary volumes connected in series) is generated, which
represents as a one-dimensional porous medium column. This model provides pore scale
distribution of local phase pressures, capillary pressure, interfacial area, saturation, and flow
rate, which are averaged to obtain the macroscale distributions of these variables. Our
analysis shows that there are discrepancies between the simulation results and the classical
equations to describe the transient behavior, especially for the nonwetting phase transient
permeability. The coefficients in the extended equations are quantified and parameterized.
Although under the applied Dirichlet boundary conditions, flow varies significantly, there is
a clear trend illustrating dependency of coefficients on saturation, independent of dynamic
conditions. Furthermore, using the new coefficients, it is possible to explain either transient
or steady state flow regimes, which is a new achievement.
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1. Introduction
1.1. Theories of Two-Phase Flow Including Interfacial
Area

[2] In the literature, there are extensive experimental,
theoretical, and computational investigations of different
properties of multiphase systems, which are directly related
to the topology and property of fluid-fluid interfaces and
capillary forces acting on them. Of these studies, we can
refer to calculation of effective viscosity in viscous finger-
ing regime [Koval, 1963; Sorbie et al., 1995], averaging
the phase pressures [Zhang et al., 2007; Nordbotten et al.,
2007; Yang et al., 2009; Korteland et al., 2009], scaling of
the fingering with dynamic properties of a system [Tallak-
stad et al., 2009], crossover behavior from viscous finger-
ing to compact flow or from capillary fingering to viscous
fingering [e.g., Wilkinson, 1986; Fernández et al., 1991;
Ferer et al., 1993], nonequilibrium relative permeability

curves [e.g., Goode and Ramakrishnan, 1993; Tsakiroglou
et al., 2003; Theodoropoulou et al., 2005], relaxation time
in fluid distribution [e.g., Buyevich, 1995], etc. Many of
these issues cannot be explained by classical Darcy’s law
for multiphase flow.

[3] In the so-called extended Darcy’s law for multiphase
flow, it is assumed that the only driving forces for flow of
each fluid are the gravity and the gradient in fluid pressure.
The resisting force, which balances the driving force, is
assumed to be linearly proportional to the relative fluid ve-
locity with respect to the solid. This results in a linear rela-
tionship between the flow velocity and driving forces.
While these assumptions are reasonable for single-phase
flow, one may expect many other factors to affect the bal-
ance of forces in the case of multiphase flow. Among these
are the interfacial forces that influence the movement of
phases and the distribution of interfaces in a porous me-
dium. In fact, through the application of rational thermody-
namics, Hassanizadeh and Gray [1990, 1993a] developed a
theory of two-phase flow in which interfacial areas were
introduced as separate thermodynamic entities, possessing
mass, momentum, and energy. They derived the momentum
balance equations not only for phases but also for the
interfaces, and macroscale effects of interfacial forces were
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explicitly included. They found that the driving forces for
the flow of a phase were the gradients of Gibbs free energy
of the phase plus gravity. They showed that for the case
of single-phase flow, the gradient of Gibbs free energy
reduces to the gradient of pressure. But, for the case of two-
phase flow, because the Gibbs free energy of a phase is a
function of saturation and specific interfacial area, as well as
mass density, its gradient will lead to terms in addition to the
pressure gradient. They derived the following extended form
of Darcy’s law in which the gradients of pressure, saturation,
and specific interfacial area appeared as driving forces:

v� ¼ �K�

��
� rP� � ��g���aranw ���SrSw
� �

; � ¼ w; n;

ð1Þ

where v� denotes the relative velocity of fluid phase � with
respect to the solid. In the rest of this work, without loss of
generality, we assume that the solid phase is rigid. K� is
� phase permeability tensor, ��a and ��S represent mate-
rial properties, g is the gravity vector, anw is the specific
area of fluid-fluid interfaces (amount of interfacial area per
unit volume of the porous medium), and P�, ��, S�, and ��

are pressure, mass density, saturation, and viscosity of the
� phase, respectively. Superscripts w and n designate wet-
ting and nonwetting phases, respectively. Note that K� is
the product of relative permeability coefficient and the
absolute permeability tensor. Thus, in the new formulation
of two-phase flow, it is considered to be a function of the
average saturation. In the classical Darcy’s law, without the
new added terms in equation (1), it has been illustrated
experimentally and computationally that K� is not only a
function of saturation but also the dynamic conditions of the
system. Those pore scale studies, which have investigated
this issue experimentally, have been reviewed by Joekar-
Niasar and Hassanizadeh [2011].

[4] Hassanizadeh and Gray [1990, 1993a] also showed
that the average motion of fluid-fluid interfaces is also
due to a gradient in their Gibbs free energy plus gravity.
Again, as the Gibbs free energy of interfaces is a function
of saturation and specific interfacial area, the following
equation for the average velocity of fluid-fluid interfaces
was obtained:

wnw ¼ �Knw � r anw�nwð Þ þ�nwrSw½ � : ð2Þ

[5] In equation (2), wnw denotes the relative macroscopic
velocity of fluid-fluid interfaces with respect to the solid,
Knw is the permeability tensor for nw interfaces, �nw repre-
sents a material property, and �nw is the macroscale interfa-
cial tension. Note that the effect of gravitational forces on
the movement of interfaces is neglected. Thus, the gravity
term g has been neglected in equation (2). These equations
may be seen as the truly extended forms of Darcy’s law,
not only for a fluid phase but also for an interface. They
must be supplemented with the following equations of bal-
ance of volume for phase saturations and specific interfa-
cial area (assuming incompressible phases and constant
mass density for interfaces) :

’
@S�

@t
þr � v� ¼ 0; � ¼ w; n; ð3Þ

@anw

@t
þr � anwwnwð Þ ¼ Enw ; ð4Þ

where ’ is the porosity, v� and wnw denote the average
velocities of � phase and nw interfaces, respectively, and
Enw is the net rate of production of nw interfaces. It is pro-
posed that Enw should depend on saturation and its time rate
of change [Pop et al., 2009; Niessner and Hassanizadeh,
2008]. Joekar-Niasar et al. [2010a] studied dependence of
Enw on dynamic parameters (viscosity ratio and different
global pressure difference) using a dynamic pore network
model. But, the size of the network was almost one repre-
sentative elementary volume (REV), and they assumed that
the advective flux of specific interfacial area was negligible.
Here, the full set of equations are analyzed in a network of
several REVs in series.

[6] Another central equation in the theories of two-phase
flow is the so-called capillary pressure–saturation relation-
ship, which is commonly written as

Pn � Pw ¼ PcðSwÞ : ð5Þ

[7] In fact, there are two major assumptions in equation
(5): capillary pressure is a function of wetting phase satura-
tion only, and fluids pressure difference is equal to capil-
lary pressure (at all times and under all conditions).
Regarding the first assumption, it is known that the capil-
lary pressure–saturation relationship is not unique but func-
tion of the history of fluids movements, even though it is
obtained under equilibrium conditions. This is probably
because the Pc-Sw relationship depends not only on the vol-
ume fraction of phases but also on their microscale distribu-
tion [Entov, 1980]. In fact, one would expect the capillary
pressure to depend also on the interfacial curvature (similar
to Laplace law at pore scale) and/or specific interfacial
area. Hassanizadeh and Gray [1993b] have suggested that
the nonuniqueness in the capillary pressure–saturation rela-
tionship is indeed due to the absence of specific interfacial
area in the capillarity theory, and they proposed the
following equation for the macroscopic capillary pressure:

Pc ¼ PcðSw; anwÞ : ð6Þ

[8] A number of computational and experimental works
have shown that under a wide range of drainage and imbibi-
tion histories, Pc-Sw-anwsurfaces more or less coincide [e.g.,
Reeves and Celia, 1996; Cheng et al., 2004; Joekar-Niasar
et al., 2008, 2009, 2010b; Porter et al., 2009]. This means
that the inclusion of anw leads to the removal or significant
reduction of hysteresis in the capillary pressure–saturation
relationship. In other words, a unique Pc-Sw-anwsurface may
exist for all the imbibition and drainage process.

[9] Regarding the second assumption underlying equa-
tion (5), it is now an established fact that Pn � Pw is equal
to the capillary pressure but only under equilibrium condi-
tions (see Hassanizadeh et al. [2002] for an extended review
of experimental evidences). For nonequilibrium situations,
the following equation for the difference in fluid pressures
has been suggested [Stauffer, 1978; Entov, 1980; Kalayd-
jian and Marle, 1987; Hassanizadeh and Gray, 1990]:

Pn � Pw ¼ Pc � � @Sw

@t
; ð7Þ
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where � , the nonequilibrium capillarity coefficient, is a ma-
terial property that may still be a function of saturation and
specific interfacial area.

[10] V. Joekar-Niasar and coworkers analyzed the
behavior of � as a function of saturation for different vis-
cosity ratios under drainage [Joekar-Niasar et al., 2010a]
and imbibition [Joekar-Niasar and Hassanizadeh, 2010]
conditions. They found that there is a significant nonequili-
brium effect especially for favorable viscosity ratios.
Recently, Niessner and Hassanizadeh [2008] have set up a
numerical model based on equations (1)–(6). They have
shown that the extended model can properly capture physi-
cal processes such as capillary hysteresis. They have also
shown that the introduction of interfacial area provides a
physically based model of kinetic mass and heat transfer
[Niessner and Hassanizadeh, 2009a, 2009b].

[11] The physical behavior of various coefficients in the
proposed set of equations is not fully analyzed. In particu-
lar, the behavior of equations (1), (2), and (4) has not been
investigated in any laboratory works because of the techni-
cal limitations. Even if experiments are possible, it would
be valuable to have an idea of the potential significance of
various terms appearing in these equations and to obtain
information on the order of magnitude of corresponding
coefficients. This can be done with the aid of pore scale
simulations. We have chosen the pore network modeling
because of its rather low computational costs, which allows
us to simulate larger domains compared to the other pore
scale simulators. Pore network models are classified under
quasi-static and dynamic ones, which are both employed in
this study. Details of the quasi-static pore network models,
as the most common pore scale simulator, are given by
Joekar-Niasar et al. [2008].

1.2. Dynamic Pore Network Modeling
[12] Dynamic pore network models can simulate the dis-

tribution of fluids and their local pressure values under
static, steady state, and transient conditions in an idealized
porous medium. However, they have been mostly used for
analysis of the transient behavior. Under static conditions,
there is no pressure gradient over the network and there is
no flow at the pore scale and Darcy scale (there is no
change in saturation and all interfaces are at rest). Under
the steady state conditions, the saturation values do not
change with time and the interfaces are at rest too, but there
is a pressure gradient over the domain, and thus the fluids
flow at the pore scale as well as the Darcy scale. Under
transient conditions, the fluid-fluid interfaces move with
time and the saturation changes at both local and Darcy
scales. The first dynamic pore network model reported in
the literature was developed by Koplik and Lasseter
[1985], who simulated two-phase imbibition process in a
two-dimensional unstructured pore network model with cir-
cular cross sections. Later, several dynamic pore network
models were developed for various applications, such as
simulating two-phase drainage [e.g., see Aker et al., 1998;
Al-Gharbi and Blunt, 2005; Dahle and Celia, 1999; Gielen
et al., 2005; Nordhaug et al., 2003], imbibition [e.g., see
Koplik and Lasseter, 1985; Hughes and Blunt, 2000;
Thompson, 2002], evaporation [e.g., Prat 2002], and three-
phase flow [e.g., see Pereira et al., 1996]. Of notable
significance are the models developed by Payatakes and

coworkers [see, e.g., Constantinides and Payatakes, 1996;
Dias and Payatakes, 1986a, 1986b], which could simulate
the ganglia displacement.

[13] Recently, Joekar-Niasar et al. [2010a] and Joekar-
Niasar and Hassanizadeh [2010] developed a dynamic
two-phase model for simulating both drainage and imbibi-
tion, called DYPOSIT: DYnamic Pore network SImulator
for Two-phase flow. This model has a number geometrical
and numerical advantages compared to the previous ones,
which are explained in detail by Joekar-Niasar et al.
[2010a]. The model solves two pore scale pressure fields,
one for each phase, in a network with angular cross sec-
tions. The pressure fields are related to each other through
the local capillary pressure, which is a function of local
interface curvature and subsequently local pore body satu-
ration. The model remains stable for both drainage and
imbibition within a wide range of viscosity ratios and
capillary numbers.

1.3. Objectives
[14] The purpose of this work is to provide insight into

the behavior and potential significance of various terms
(��a and ��S , � ¼ w; n in equation (1), �nw and Knw in
equation (2), and Enw in equation (4)) in the extended theo-
ries of two-phase flow in porous media, presented above.
We perform the transient drainage simulations in a long
pore network, representing a one-dimensional column. Af-
ter finishing the pore scale simulations, postprocessing
analysis is performed to obtain the Darcy-scale entities
introduced in the theory. A moving REV averaging proce-
dure is formulated that results in the macroscale fields of
fluids pressures, velocities, saturations, and specific interfa-
cial area. Finally, with extensive analysis of these data, the
functional dependencies and magnitudes of coefficients
��a, ��S , �nw, Knw, and Enw are obtained.

2. Model Description
[15] In this study, we have used a dynamic pore network

simulator for two-phase flow, DYPOSIT, developed by
Joekar-Niasar et al. [2010a] and Joekar-Niasar and Hassa-
nizadeh [2010]. Here, a summary of main features, govern-
ing equations for pore scale simulations, and algorithms are
provided. Please note that all entities introduced in this sec-
tion are local (pore scale) entities. To employ results of
simulations for the analysis of Darcy-scale equation, the
pore scale entities should be averaged. Details of the aver-
aging procedure are introduced in section 3.4.

2.1. Structure and Geometry
[16] The network is based on a regular three-dimensional

lattice with fixed coordination number of six. Table 1
shows fluid and network properties used in the simulations.
Length of the network in the flow direction is equal to 210
pore bodies. Over the network cross section normal to the
flow direction, there are 30 � 30 pore bodies. Given the
definition of the viscosity ratio as ðM ¼ �invading=�recedingÞ,
it can be smaller than one (in oil recovery) or larger than
one (in fuel cells, paper pulp industry). We select M ¼ 1 as
it is the most neutral case; under Dirichlet boundary condi-
tions with invasion of a fluid, the interface pattern can
change from a stable front to a capillary fingering one.
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[17] Pore bodies and pore throats are represented by
‘‘cubes’’ and ‘‘parallelepipeds,’’ respectively (Figure 1).
The size distribution of pore bodies is specified by a trun-
cated lognormal distribution. No spatial correlation has
been considered in the network, as the effect of correlation
length on the simulation results is out of the focus of this
study. Statistical properties of radii of pore body inscribed
spheres, pore throat inscribed circles, and aspect ratio dis-
tributions are shown in Table 2. Aspect ratio is defined as
the ratio of the radius of a pore body to that of a pore throat.
Corresponding to Table 2, Figures 2a and 2b show the pore
body and pore throat size distributions as well as aspect
ratio distribution.

2.2. Assumptions
[18] The following assumptions are imposed in the com-

putational algorithm and network development.
[19] 1. The volume of pore throats is negligible com-

pared to the volume of pore bodies. Thus, the time required
for filling a single pore throat is negligible compared to that
of a pore body. This assumption is in agreement with the
experiments which measured the velocity of Haines jump

[Lu et al., 1994]. Also, the volume and interfacial area of
pore throats are not included in the computation of network
saturation and specific interfacial area.

[20] 2. Hydraulic resistance to flow in pore bodies is
assumed to be negligible compared to that of pore throats.

[21] 3. Fluids are assumed to be immiscible and incom-
pressible, and the solid matrix is assumed to be rigid.

[22] 4. Flow in the pore throats is assumed to have a low
Reynolds number such that transient effects can be
neglected at pore scale. This allows us to use Washburn-
type [Washburn, 1921] equation for fluid fluxes through
pores.

[23] 5. No gravity effect has been considered in the sim-
ulations. Flow occurs owing to the pressure difference
across the boundaries. Adding gravity does not constitute
any major complication in the code, but it will not affect
results and conclusions.

2.3. Two-Phase Flow Formulations for the Network
Model
2.3.1. General Equations for the Two-Phase Flow

[24] The local capillary pressure for a pore body i, pc
i , is

defined as

pc
i ¼ pn

i � pw
i ¼ f ð�iÞ ¼ f ðsw

i Þ ; ð8Þ

where pn
i and pw

i are the local fluid pressures, �i is the cur-
vature of an interface within the pore body i, and sw

i is
defined as the volume of the wetting fluid in a pore body
divided by the volume of the pore body. Since the fluid

Table 1. Fluid and Network Properties Used in the Simulations
and Analyses

Parameter Symbol Value Unit

Contact angle � 0.0 degree
Interfacial tension �nw 0.0725 kg s�2

Wetting fluid viscosity �w 0.001 kg m�1 s�1

Nonwetting fluid
viscosity

�n 0.001 kg m�1 s�1

Total number of pore
bodies in flow direction

nz 210 -

Total number of pore
bodies in lateral
directions

nx, ny 30 -

Network size - 7.28 � 1.08 � 1.08 mm3

Permeability (calculated) K 6.56 � 10�12 m2

Entry capillary pressure
(calculated)

Pc
d 14 kPa

Figure 1. Illustration of the network and its elements. (a) A pore unit. (b) A part of the REV-size
network. (c and d) The complete network in 2-D.

Table 2. Statistical Properties of the Radii of Inscribed Spheres in
Pore Bodies (Ri) and Inscribed Circles in Pore Throats rij

Specifications Ri (mm) rij (mm)

Min 0.008 0.005
Max 0.018 0.013
Mean 0.012 0.008

SD 0.003 0.0017
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configuration at pore scale is constrained by solid bounda-
ries, there is a unique algebraic relationship between the
local curvature and local wetting phase saturation. Note
that compared to equation (7), no relaxation time is
assumed to exist in a change of the curvature due to the
change of fluid pressures. So, the term �@Sw=@t in equation
(7) is due to the spatial rearrangement of fluids over the
whole network in order to reach the equilibrium. It means
that under transient conditions, although at the pore scale
�i varies spontaneously with change of local phase pres-
sures with time, at the Darcy scale there will be a nonequi-
librium effect in reaching to Darcy-scale equilibrium
saturation.

[25] A flux Q�
ij is assigned to a pore throat ij for each

phase separately. A separate volume balance for each phase
in a pore body is employed:

Vi
�s�i
�t
¼ �

X
j2Ni

Q�
ij ; � ¼ w; n; ð9Þ

where Ni is the set of all pore throats connected to pore body
i, Vi is the volume of the pore body, and s�i is the saturation
of phase � in the pore body. Washburn’s formula [Washburn,
1921] was originally developed for circular cross sections.
Analogous to that, the volumetric flux of phase � in an angu-
lar cross-sectional pore throat ij is given by

Q�
ij ¼ �K�ijðp�j � p�i Þ; � ¼ w; n ; ð10Þ

where K�ij is an algebraic function of the geometry and fluid
occupancy of the pore throat given by Joekar-Niasar and
Hassanizadeh [2010].

[26] Most dynamic pore network models assign one single
fluid pressure to a pore body and single effective conductiv-
ity to a pore throat [see, e.g., Al-Gharbi and Blunt, 2005;
Mogensen and Stenby, 1998]. Here, we assign different pres-
sures and conductivities to each phase. This has major
advantages. For example, it allows us to include mechanisms
related to the local capillary pressure (such as snap-off,
countercurrent flow, mobilization of discontinuous phases).
Equations (8), (9), and (10) form a determinate set to be

solved for sw
i , pw

i , and pn
i . The pressure fields and saturation

are calculated in sequence. Details of formulations employed
for pressure and saturation as well as time stepping are
explained by Joekar-Niasar et al. [2010a]. To improve nu-
merical stability of the model for different dynamic condi-
tions, a semi-implicit saturation update has been used. Thus,
two linear systems of equations were solved for pressure and
saturation by diagonally scaled biconjugate gradient method
using the SLATEC mathematical library (http://www.netli-
b.org/slatec/guide).
2.3.2. Local Rules
2.3.2.1. Capillary Pressure–Saturation Relationships
for Pore Bodies and Pore Throats

[27] Since pore bodies in our model are cubic, the wet-
ting phase is always present in the corners and along edges.
The saturation of the pore body depends on the prevailing
capillary pressure. For a given capillary pressure, curvature
of the interface in the vertices and edges of the cube can
be calculated, and consequently, the corresponding satura-
tion can be estimated. Details of derivation of the (local)
pc

i -sw
i relationship for a cubic pore body are given by

Joekar-Niasar et al. [2010a]. The resulting equation for pc
i

in terms of the radius Ri of the inscribed sphere of the pore
body i and the local wetting phase saturation is

pc
i ðsw

i Þ ¼
2�nw

Ri 1� expð�6:83sw
i Þ½ � : ð11Þ

[28] A capillary pressure should be also assigned to a
pore throat once it is invaded and both phases are present.
We assume that the capillary pressure in a pore throat is
equal to the capillary pressure of the upstream pore body.

[29] Obviously, it is impossible to completely displace
the wetting phase from the corners of a pore body. We
assume that each pore body has a minimum saturation
sw

i;min, which depends on the imposed global pressure differ-
ence (Pc

global defined in section 3.1) as well as the blockage
of the invading fluid. The capillary blockage of invading
fluid

�
Pc

eblock

�
is also a global variable, defined to be the

minimum entry capillary pressure of all pore throats that
are in the vicinity of the nonwetting phase but not invaded

Figure 2. Network geometry properties. (a) Pore body and pore throat size distributions. (b) Aspect
ratio distribution.
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by it yet. Thus, using the pc
i -sw

i relationship given by equa-
tion (11), the local minimum wetting phase saturation in a
pore body may be determined as follows:

sw
i;min ¼ �

1
6:83

ln 1� 1
Ri

2�nw

min Pc
global; Pc

eblock

� �
2
4

3
5 : ð12Þ

2.3.2.2. Anw
i -sw

i Relationship for a Pore Body
[30] In our calculations, we consider only the interfacial

area existing in pore bodies. There are two different types
of capillary interfaces in a pore body, interfaces in corners
and edges and interfaces covering the entrance of pore
throats that have not yet been invaded. These two types are
referred to as ‘‘corner interfaces’’ (arc menisci) and ‘‘main
terminal menisci,’’ respectively [Mason and Morrow,
1987]. Detailed information for calculation of interfacial
area is given by Joekar-Niasar et al. [2010a].

[31] For corner interfaces ðAnw
ci
Þ, given a pore body with

inscribed radius Ri and filled with both phases, the nonwet-
ting phase volume can be smaller or larger than the
inscribed sphere volume. If the nonwetting phase volume is
smaller than or equal to the volume of inscribed sphere
(corresponding to sw

i � 0:48), we assume that it occupies a
sphere, the radius of which is Ri; eq ¼ Ri 6=	ð1� sw

i Þ
� �1=3

.
The corresponding interfacial area will be 4	R2

i; eq. If the
nonwetting phase volume is larger than the volume
inscribed sphere (corresponding to sw

i < 0:48), the total
interfacial area in corners of a pore body will be equal to
4	R2

i; eqþ 6	Ri; eqðRi � Ri; eqÞ, where Ri,eq is defined in equa-
tion (13). The results are summarized as follows:

Ri; eq ¼
Ri½6	ð1� sw

i Þ�
1=3 sw

i � 0:48

Ri½1� expð�6:83sw
i Þ� sw

i < 0:48

(
ð13Þ

Anw
ci
¼

4	R2
i; eq sw

i � 0:48

4	R2
i; eq þ 6	Ri; eqðRi � Ri; eqÞ sw

i < 0:48

(
ð14Þ

[32] For the main terminal menisci ðAnw
mi
Þ, consider a

pore body i, partially occupied by the nonwetting phase,
and a pore throat ij, which has not been yet invaded.
Opening of the pore throat ij is thus covered by a ‘‘main
terminal meniscus.’’ The geometry of the main terminal
meniscus is simply assumed to be a part of a sphere with
a radius of curvature Rdm equal to 2�nw=Pc

i . Thus, the
area of the main terminal meniscus will be equal to

Anw
mi
¼ 8	 �nw=Pc

i

� �2 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rijPc

i =2�nw
� �2

q	 

, i is

the upstream pore body of pore throat ij. Thus, the total
interfacial area ðAnw

i Þ in a pore body is equal to
Anw

i ¼ Anw
ci
þ Anw

mi
.

[33] In addition to the local capillary pressure–saturation
and the local interfacial area-saturation curves, relations for
the entry capillary pressure of pore throats, phase conduc-
tivities of pore throats, and snap-off condition in pore
throats should be defined. Details of these relations are
given by Joekar-Niasar et al. [2010a].

3. Simulations and Analysis
3.1. Network Size and Boundary Conditions

[34] To analyze Darcy-scale equations using pore net-
work models, size of the pore network should be equal to
at least one REV. It should be noted that REV size will
increase with the increase of (1) the variance of pore size
distribution, (2) the correlation length in the spatial pore
size distribution, and (3) the heterogeneity in network to-
pology. In the network modeling concept, various REV
sizes have been reported in the literature. For example,
Nordhaug et al. [2003] selected a lattice network with
size of 10 pore bodies as the REV for studying the mac-
roscopic interface velocity. Al-Gharbi and Blunt [2005]
analyzed dependencies of fractional flow curves on
dynamic conditions in a 9 � 9 two-dimensional network.
For reactive transport studies, Li et al. [2007] selected a
network with a total of 6000 pores as the REV. The
REV selected by Gielen et al. [2005] was equal to a lat-
tice network with 10 pore bodies in each direction. They
quantified the nonequilibrium capillarity coefficient
during drainage.

[35] In this study, we have determined the size of REV
on the basis of Pc-Sw and k�r - Sw curves, which are the main
characteristic curves for a porous medium. The size of
REV was determined by performing equilibrium drainage
simulations in networks with different sizes but the same
statistical parameters. The capillary pressure–saturation
(Pc-Sw) and the relative permeability-saturation (k�r -Sw)
curves, resulting from the networks with different sizes,
were compared to each other. Our simulation results (not
presented) showed that these characteristic curves were
identical for networks larger than 30 � 30 � 30 pore
bodies. Thus, for given statistical parameters, the REV is a
lattice network with 30 pore bodies in each direction. This
size of REV is quite large compared to the typical REV
sizes reported in the literature. So, for our simulations, we
constructed a pore network model with the cross-sectional
size of 30 � 30 pore bodies. To be able to calculate the gra-
dients of pressures, saturation, and interfacial area from
pore network simulations, a long pore network model was
required. Thus, the length of network was chosen to be
equal to 210 pore bodies along the flow direction. The sim-
ulation of drainage process in this network took more than
3 weeks using one processor of an AMD Opteron 2218
computer with 6GB RAM.

[36] For our simulations, we assumed that the network
was connected to a nonwetting phase reservoir on one side
and a wetting phase reservoir on the other side. Phase pres-
sures were specified at these boundaries. Side boundary
conditions were assumed to be periodic.

[37] The pressure of the nonwetting phase reservoir was
denoted by Pn

top, and the pressure of the wetting phase res-
ervoir was set to zero. The difference between the two
boundary pressures during drainage is referred to as
‘‘global pressure difference’’ Pc

global. Pc
global in our simula-

tion was set to 30 kPa. Once the nonwetting phase reached
a pore throat at the wetting phase boundary, it was assumed
that the gradient of capillary pressure within the invaded
pore throat was equal to zero ð@pc

ij=@lij ¼ 0Þ. This was
done to prevent a sudden relaxation of interfaces after
breakthrough of the nonwetting fluid.
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3.2. Drainage Simulations
[38] The network was assumed to be initially fully satu-

rated with the wetting phase. Simulation started with rais-
ing the pressure of the nonwetting phase reservoir to Pn

top
and establishing a global pressure difference, Pc

global, across
the network. When the imposed pressure difference was larger
than the entry pressure of the largest pore throat at the non-
wetting phase reservoir boundary, drainage would start. In
quasi-static simulations, the nonwetting phase reservoir
pressure was increased in incremental steps so that the net-
work would be invaded in steps. At the end of each step,
when there was no flow (static conditions), the overall satu-
ration and the specific interfacial area were determined.
Then the global pressure difference was increased again.
Each global pressure difference corresponds to a saturation
value. The capillary pressure–saturation data points formed
the quasi-static Pc-Sw curve. In transient simulations, the
imposed Pc

global was chosen to be so large that the whole
network could be flooded in one transient step. The simula-
tions were continued until the change of average saturation
in the whole network was not significant.

3.3. Steady State Phase Permeability Curves
[39] Relative permeability for each phase is commonly

determined from the steady state flow experiments as a
function of average saturation. A steady state flow experi-
ment at a given average saturation (or a given capillary
pressure) was simulated as follows. As described above, in
quasi-static simulations, we obtained an equilibrium con-
figuration of fluids in the network at a given Pc

global. That
equilibrium configuration was frozen, and a small pressure
gradient for each phase was imposed across the selected
section of the network, where both phases formed a contin-
uous path. The pressure gradient was chosen such that the
imposed Pc

global was kept unchanged at the boundaries.
Also, it was assumed to be so small that fluid configurations
were not affected. Therefore, equations (8)–(10) would
apply with the left-hand side of equation (9) being zero.
The solution of resulting equations provided steady state
pressure fields for the two phases. Then total flow through
the network for each phase was calculated. Then, following
the classical Darcy’s law, the phase permeability K� was
calculated as ���v�=ð@p�=@xÞ. One should note that since
the pore throats have square cross sections, wetting fluid is
always connected to the reservoir, but its conductance
decreases with increase of global capillary pressure Pc

global.

3.4. Averaging Procedure and Averaging Operators
[40] Our simulations resulted in the fields of local varia-

bles, such as pressures, saturations, and fluxes, at consecu-
tive time steps. These were then averaged over an averaging
domain moving along the network. That is, at any given
time, t, the averaging domain was moved along the network
pore layer by pore layer; thus, determining average varia-
bles as a function of distance x (position of the center of the
averaging domain; see Figure 3). This allowed us to obtain
gradients of average variables as well as their time deriva-
tives. The averaging domain size was chosen to be 30 �
30 � 30 pores, which we had determined to be the REV
size. Thus, for our network with the length of 210 pore
bodies, this procedure resulted in 180 values for each average
variable, at any given time. Average values were determined

for saturation, specific interfacial area, pressure, fluid veloc-
ities, and interface velocity, following formulas presented
below.

[41] Average saturation was simply defined as the ratio
of total volume of the wetting phase within the averaging
domain to the total pore volume:

Sw ¼
Pnpb

j¼1 sw
j VjPnpb

j¼1 Vj

; ð15Þ

where Vj is the volume of pore body j and npb is the total
number of pore bodies of the averaging domain centered at
x. The gradient of saturation for domain was calculated
from the average saturations of domains centered at
x� 
=2 and xþ 
=2, as shown in Figure 3b:

@Sw

@x
¼

Sw
xþ
=2 � Sw

x�
=2



; ð16Þ

where 
 is the length of the averaging domain.
[42] The averaging of pressure is less straightforward.

Commonly, average pressure is obtained using an intrinsic
phase average operator [see, e.g., Whitaker, 1977]. How-
ever, recently it has been shown that the intrinsic phase
average pressure introduces numerical artifacts when both

Figure 3. (a) Schematic presentation of averaging domain
moving along the flow direction. (b) For calculating the gra-
dient of average variables, average values at two neighbor-
ing domains centered at x� 
=2 and xþ 
=2 are used.
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pressure and saturation are spatially variable [see Nordbot-
ten et al., 2007, 2008; Korteland et al., 2009]. Instead, a
centroid-corrected averaging operator has been suggested
by Nordbotten et al. [2008] to alleviate problems associated
with intrinsic phase averaging. Nevertheless, in this work,
we decided to use intrinsic phase average, as it is still the
most commonly used operator. This choice does not affect
the issues and concepts studied here. The average phase
pressure can be given by

P� ¼
Pnpb

j¼1 p�j s�j VjPnpb

j¼1 s�j Vj

; � ¼ n; w : ð17Þ

[43] The specific interfacial area was calculated by sum-
ming all the interfacial areas in an averaging domain
divided by its total volume:

anw ¼
Pnpb

j¼1 Anw
j

V
; ð18Þ

where Anw
j is the fluid-fluid interfacial area in a pore body j.

The gradients of fluids pressures and specific interfacial
area over the domain were also calculated using equations
similar to (16). The average phase velocity for the domain
centered at x was defined as follows:

v� ¼
Pnpth

j¼1 v�j s�j VjPnpth

j¼1 s�j Vj

; � ¼ n; w ; ð19Þ

where v�j is the local velocity in the pore throat j for fluid �
and Vj is the volume of the pore throat j. This velocity is
averaged over the pore throats considering their orientations.

[44] The macroscopic velocity of fluid-fluid interfaces
can be determined in two different ways.

[45] 1. It can be based on the average of velocities of
individual interfaces: It is indeed possible to calculate the
velocity of individual interfaces within the network. How-
ever, this velocity fluctuates strongly. The reason is that
interfaces move in the form of Haines jump. As long as the
local capillary pressure is smaller than the entry capillary
pressure of a pore throat, the pore interface is stagnant. But,
once the interface moves, it moves very fast. At any given
time, only a few interfaces can move, which temporarily
may have large velocities. These velocities depend on the
global capillary pressure, interfacial tension, pore size, and
viscosity ratio. Lu et al. [1995] found that for ethanol-air
system with a viscosity of 0.0119 Pa s, in a pore with
radius of 0.05 cm, the velocity of capillary rise can reach
20 cm s�1. So, these velocities are not really representative
of all fluid-fluid interfaces in the averaging domain.

[46] 2. It can be based on the time rate of change of the
centroids of all interfacial areas within the averaging do-
main: We propose that the second option is physically
more acceptable and in line with the classical definition of
the average velocity of a collection of masses since it is
equal to the time rate of change of their center of mass.
Therefore, we have chosen to determine the macroscale ve-
locity of interfaces from the position of center of mass of
interfaces in the averaging domain in two consecutive time
steps. Given the assumption that fluid-fluid interfaces have

a constant mass density, the macroscopic interfacial veloc-
ity was defined as follows:

wnw ¼ 1
tkþ1 � tk

Pnpb

j¼1 xjAnw
jPnpb

j¼1 Anw
j

 !kþ1

�
Pnpb

j¼1 xjAnw
jPnpb

j¼1 Anw
j

 !k2
4

3
5 ; ð20Þ

where xj denoted the position of interfaces in pore body j
and the superscript k denotes the time step. Note that in this
calculation, only the interfaces in the pore bodies were
included. Interfaces in pore throats did not move from one
time step to another.

[47] For calculating the divergence of product of interfa-
cial area and its velocity, rðanw

i wnw
i Þ, appearing in equation

(4), we employ the 1-D equivalent of the divergence
theorem:

@ðanwwnwÞ
@x

¼ 1



Xnpb

j¼1

ðAnw
j wnw

j ÞjDB �
Xnpb

j¼1

ðAnw
j wnw

j ÞjUB

" #
; ð21Þ

where DB and UB denote the downstream and upstream
boundaries, respectively.

4. Results and Discussion
[48] The extended two-phase flow equations involve new

variables such as velocity of fluid-fluid interfaces or their
rate of production, as well as new coefficients. In this sec-
tion, the behavior of these new variables is investigated,
and values of new coefficients are quantified. The major in-
terest in this work is to gain an insight into the role of fluid-
fluid interfaces in the description of two-phase flow.

4.1. Investigation of Darcy’s Law
4.1.1. Equilibrium Conditions

[49] As explained in section 3, capillary pressure–
saturation (Pc-Sw) curves were determined under quasi-
static conditions, and phase permeability-saturation (k�-Sw)
curves were obtained through steady state flow simulations
of primary drainage. These curves were computed for each
and every moving averaging domain along our network. As
a result of this procedure, 180 average curves were pro-
duced. The mean of resulting curves are shown in Figure 4,
where the range of variations is shown by vertical bars. It is
obvious that there is no significant variation in these charac-
teristic curves over the whole network.

[50] Under no-flow conditions, we have v� ¼ 0 and
@P�=@x ¼ 0, but we may still have gradients in saturation
and specific interfacial area. Thus, from equation (1), as
there is no gravity in our simulations, we obtain

��S

��a
¼ �

anw
; x

Sw
; x

� ¼ w; n ; ð22Þ

where S,x and a,x denote @S=@x and @a=@x, respectively.
From our simulation results, we can calculate the right-
hand side of equation (22) at different saturation values as
plotted in Figure 5. Note that �nS=�na ¼ �wS=�wa. There
is an obvious trend that can be fitted with a simple formula

�wS

�wa
¼ m

Swn ; ð23Þ
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where m has the dimension of [1/L] and n is a dimension-
less coefficient. For the curve presented in Figure 5, we
have m ¼ 19.9 mm�1 and n ¼ 0.574.
4.1.2. Standard Darcy’s Law Under Transient
Conditions

[51] The relative permeability curve, measured under
steady state flow conditions, is also used in the standard
Darcy’s law under transient flow conditions. Here, we show
that this assumption is generally not valid. In our transient
simulations, we determined the phase permeability K� by cal-
culating ���v�=@P�=@x for many averaging domains along
the network (the same procedure that we followed to obtain
curves shown in Figure 4). The mean of the resulting curves
are plotted in Figure 6, along with the steady state curves.

[52] Our results clearly show that the steady state and
transient curves are significantly different, specially for the
nonwetting phase. There are large discrepancies between
the steady state and transient permeability curves. In partic-
ular, it has a nonmonotonic behavior and is much larger

than the steady state values for the medium and high wet-
ting phase saturations. This is also the range that fluid-fluid
interfaces are generated and the system is very dynamic.
As known, the premise of the standard theory using
Darcy’s law is that the relative permeability determined
under steady state flow conditions is also applicable under
transient conditions. We have examined this matter and
have clearly shown that this assumption is not supported by
our numerical simulations as well as previous laboratorial
studies [e.g., Tsakiroglou et al., 2003]. When the system
gets closer to the steady state conditions, the discrepancy
between the curves decreases.

[53] As mentioned above, the permeability values are
determined for a large number of averaging domains. The
variations from the mean values are shown by means of ver-
tical bars for the steady state curve and by vertical boxes for

Figure 4. Averaged characteristic curves for a moving averaging domains along the domain. The bars
at each saturation show the minimum and maximum value resulted at that saturation. (a) Capillary
pressure–saturation curve. (b) Permeability for each fluid versus saturation.

Figure 5. Variation of anw
; x =Snw

; x versus saturation for all
snapshots using equations (15), (16), and (18). This ratio is
used for quantifying the ratio of material coefficients
��S=��a in the extended Darcy’s law (equation (1)).

Figure 6. Ratio of � phase flux to the � phase pressure
gradient under transient conditions, referred to as transient
phase permeability (shown in circles). It is compared with
steady state permeability curves (shown in solid lines). The
bars show the range of variation of 10%–90% of the data
points at the given saturation.
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the transient curves. The boxes in Figure 6 show the 10%
and 90% probability of the occurrence for all transient
phase permeabilities. As it can be seen, there is a significant
variation in the magnitude of the transient phase permeabil-
ity. As mentioned before, in our simulations, capillary
number was variable; it decreased with invasion of the non-
wetting fluid.

[54] Also, it can be observed that under transient flow
conditions, for Sw > 0:5, there is a linear relationship
between the transient wetting phase permeability and satu-
ration. This is qualitatively in agreement with steady state
experimental observations of Constantinides and Paya-
takes [1996] and simulation results of Tsakiroglou et al.
[2003], who observed that with the increase of capillary
number (increase of viscous forces), the nonlinear behavior
of relative permeability decreased.

[55] Furthermore, we note that as the residual saturation
is approached, the transient nonwetting phase permeability
also approaches the steady state values. This is because the
fluids configuration is well developed under those condi-
tions and nonequilibrium effects become negligible. The
foregoing results point to the fact that the standard Darcy’s
law is not valid under transient flow conditions. We there-
fore investigate the role of additional terms in the extended
Darcy’s law given by equation (1).
4.1.3. Extended Darcy’s Law Under Transient
Conditions

[56] As mentioned before, many computational and ex-
perimental studies have shown that the relative permeabil-
ity in the classical Darcy’s law strongly depends on the
transient flow variables such as flow velocity and/or pres-
sure gradient. On the basis of the theoretical background
[e.g., Hassanizadeh and Gray, 1993a] as well as our com-
putational experiments, we propose that this is because the
pressure gradient is not the only driving force for two-
phase flow. Indeed, as suggested by equation (1), gradients
in saturation and specific interfacial area also contribute to
the flow. But, because they are absent in the classical
Darcy’s law, their role has to be taken over by the relative
permeability. In order to investigate this conjecture, we use
the results of transient conditions to determine the signifi-
cance of extra terms in equation (1). First, the values of
coefficients ��S and ��a need to be determined.

[57] In section 4.1.2, the ratio of ��S
�

��a for each phase
was obtained; thus, only two independent coefficients (one
coefficient per phase) should be determined. Once again, for
any given set of boundary conditions, v�, P�; x, anw

; x , and Sw
; x

can be calculated. With K� already known as a function of
Sw for steady state simulations, the other two coefficients
can be calculated. The results are shown Figure 7. One
should note that the data points correspond to various
dynamic conditions (flow rates) along the domain. Yet the
material coefficients, ��a and ��S , seem to be independent
of dynamic conditions, and there is a clear trend as a func-
tion of saturation. The large variations in the values of these
material coefficients near Sw ¼ 1 are due to the fact that at
that saturation, the two-phase flow occurs in a small number
of pores and the addition or subtraction of one pore may
have a large effect on average variables. As a result, the val-
ues of these coefficients at high saturation are uncertain.

[58] To show the importance of the gradient of pressure
compared to the new terms in the extended Darcy’s law,

we have presented their ratio in Figure 8. In Figure 8a the

ratio Pw
; x

.
��waanw

; x ��wSSw
; x

� �
versus saturation and in

Figure 8b the ratio ��naanw
; x þ�nSSw

; x

� �.
Pn
; x versus satu-

ration have been presented. It is clear that the effect of the
new terms is basically negligible for the wetting phase but
very significant for the nonwetting phase. This means that
the deviation of the fluid flux calculated from the classical
Darcy’s law from the ‘‘true value’’ is not as significant for
the wetting phase as for the nonwetting fluid flux. In Figure
8b, the ratio ��naanw

; x þ�nSSw
; x

� �.
Pn
; x starts from a large

value at high saturations, and it decreases as steady state
conditions are approached. This implies that for an
improved estimation of fluid fluxes under transient condi-
tions, especially for the nonwetting fluid, the gradient of
interfacial area and saturation should be included.

4.2. Interfacial Area Equations
[59] The introduction of the specific interfacial area

as a state variable into the theories of multiphase flow
necessitates a new set of governing equations to model
its evolution. These are given by equations (2) and (4).
Equations (2) and (4) also comprise new material proper-
ties, which are the macroscopic interface velocity, interfa-
cial conductivity tensor, macroscale interfacial tension,
material coefficient �nw, and the interfacial production
term Enw. In this section, the results of transient drainage
simulations are used to calculate these properties and
investigate their behavior.
4.2.1. Macroscopic Interface Velocity

[60] Using equation (20), the macroscopic interface ve-
locity was calculated for 180 averaging domains with time.
We then looked into the possible relationships between the
interface velocity and other quantities. We found a mean-
ingful relationship with the saturation and time rate of
change of saturation. The resulting plot is shown in Figure
9a. As it can be observed, there is an almost linear relation-
ship between the interface velocity and the time rate of satu-
ration change. We should point out the small negative
interface velocities were obtained at large saturations. This
is caused by the fact that when interfaces have just entered
the averaging domain, local imbibition may occur; that is,
the nonwetting fluid may temporarily move back and out
of the domain. In the intermediate saturation range, the
interface velocity reaches its maximum value. Nordhaug
et al. [2003] also calculated variation of interface velocity
with saturation, using a pore network model with circular
cross sections and a size of 10 � 10 � 50 pore bodies, elon-
gated in flow direction. They studied the variation of inter-
face velocity under various transient conditions (capillary
number and viscosity ratio). Although the algorithm for cal-
culation of interface velocity in their network was different
from our approach, they got a qualitatively similar behavior
for interface velocity especially under capillary-dominated
flow conditions. However, because of the small size of their
averaging domain (10 � 10 � 10 pores), there was a bound-
ary effect in their results, which caused an overshoot of
interface velocity at large saturations (Sw > 0:9).

[61] We should emphasize that we are not seeking an
explicit relationship between macroscopic interface velocity
and saturation and its rate of change. Figure 9a is provided
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here for the purpose of illustrating variations in interface
velocity. The governing equation for describing the macro-
scopic motion of interfaces is equation (2) that will be
investigated below.
4.2.2. Interface Conductivity and Material
Coefficient �nw

[62] After calculating the fluid-fluid interface velocities
at different saturations under variable transient conditions,
it is possible to estimate the conductivity of interfaces using
equation (2). Assuming constant interfacial compositions
and for a one-dimensional domain, we can rewrite equation
(2) as follows:

wnw ¼ �knwðanw
; x þ  nwSw

; xÞ ; ð24Þ

where knw½L3=T � ¼ �nwKnw interfacial tension �nw is
lumped into other coefficients, and  nw ¼ �nw=�nw[1/L].
First, the coefficient  nw is obtained from the equilibrium
conditions, where the interfaces do not move and wnw is
equal to zero. Under these conditions, we have

 nw ¼ �
anw
; x

Sw
; x
¼ m

Swn
; ð25Þ

where the right-hand side of equation (25) follows from equa-
tion (23). Next, the interfacial conductivity knw can be deter-
mined from equation (2) under transient conditions. All
terms in equation (2) can be calculated for a large number
of averaging domains and at various times, allowing us to
find values of knw for a wide range of transient conditions.
The result is plotted as a function of average saturation in
Figure 9b. It is evident that the interface conductivity is an
increasing function of wetting fluid saturation. One should
note that, except for the range of Sw > 0:9, the variation in
values of interface conductivity estimated under various
transient conditions is not significant. This shows that this
coefficient is a reasonably well-behaved function of satura-
tion under a wide range of transient conditions. Large varia-
tions of interface conductivity for Sw > 0:9 is due to the
variations of interface velocity. Negative values in that
range (see Figure 9a) are caused by local temporary imbibi-
tion during the early stages of invasion. This effect reduces
dramatically as soon as the nonwetting phase saturation
becomes significant in the averaging domain.
4.2.3. Production Rate of Interfacial Areas

[63] We use equation (4) to calculate the production
term, Enw. Thus, we have to estimate the change of specific

Figure 7. Variation of material properties presented in equation (1) based on the moving averaging do-
main analysis of the simulations. (a) �wa, (b) �wS , (c) �na, and (d) �nS . Description of the bars are given
in caption of Figure 6.
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interfacial area with time ð@anw=@tÞ as well as the flux of
interfacial area ð@ðanwwnwÞ=@xÞ. Both of these quantities
can be calculated for a large number of averaging domains.
The resulting production rate is plotted in Figure 10 as a
function of average saturation and its time rate of change.
Figure 10 shows that Enw depends linearly on the time rate
of saturation change. Furthermore, it reaches its maximum
value in the range of intermediate saturations. This is due
to the greater possibilities for the creation of invasion sites
at intermediate saturations. At high wetting fluid satura-
tions, only a few pores are filled with the nonwetting fluid.
Thus, a small amount of interfacial area is created. With
invasion of the nonwetting fluid, more pores will be filled,
each of them acting as the launching site for the invasion of
many other pores by the nonwetting fluid. This causes a
faster creation of interfacial area. Eventually, the interfacial
area associated with the main terminal interfaces will start
to become less and less, as many of them will coalesce
with each other. Thus, the production rate of specific inter-
facial area will decrease.

5. Concluding Remarks
[64] We have simulated two-phase drainage experiments

using a dynamic pore network model, called DYPOSIT,
under constant pressure boundary conditions. The simula-
tion network has a cross section of 30 � 30 pore bodies and
a length of 210 pore bodies in the flow direction. The anal-
yses are based on the volumetric averaging in a moving
averaging domain with the size of 30 � 30 � 30 pore
bodies. The averaging is done along the domain in many
time steps. Because of the imposed boundary conditions
(i.e., constant pressures) the flow velocity varies consider-
ably with time as the nonwetting fluid invades the domain.
As a result, the capillary number changes through the
network with time from 2 � 10�5 to 5 � 10�7. So, the

Figure 8. Ratio of gradient of fluid pressure to the other
added terms in equation (1) for (a) wetting fluid (b) non-
wetting fluid. On should note that for clear illustration the
ratio is inverse in Figure 8b. Figure 9. (a) Dependence of macroscopic interface ve-

locity on saturation and change of saturation with time, cal-
culated using equation (20) for all simulation snapshots and
averaging domains, (b) Variation of interface conductivity
with saturation resulted from analysis of all moving averag-
ing domains in time and space. Description of the bars is
given in the caption of Figure 6.
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calculated material properties are obtained for a wide range
of capillary numbers.

[65] We have used our results to investigate the thermo-
dynamically based theories of two-phase flow in porous
media, where the fluid-fluid specific interfacial area is
included as a new state variable. First, we have shown that
if the standard Darcy’s law is used under transient condi-
tions, then the phase conductivity of the nonwetting phase
will be a nonmonotonic function of saturation. Also, the
wetting phase conductivity determined under transient con-
ditions will be significantly different from the steady state
phase conductivity. We propose that this is because of the
fact that in the standard Darcy’s law, the pressure gradient
is assumed to be the only driving force for the flow. But, we
know that in two-phase flow, the movement of interfaces
and energies associated with them significantly affect the
flow of phases. It is conjectured that the new terms in the
extended Darcy equation account for such effects. These
terms introduce gradients in the saturation and specific
interfacial area as extra driving forces. We have shown that
including these terms allows us to use the steady state rela-
tive permeability curve for transient flow conditions. We
have determined the values of material coefficients associ-
ated with the extra terms that are well-behaved functions of
saturation. Next, various coefficients appearing in the equa-
tions governing the evolution of interfaces were determined.
One of these coefficients was the interface conductivity.
Our results show that the interface conductivity is an
increasing function of the wetting phase saturation. We
have also determined the rate of production of specific inter-
facial area. Our results show a linear relationship between
the production rate of fluid-fluid interfaces and the change
of saturation with time. It is also shown that although
interfaces may have high velocities at the moment of
Haines jump, the macroscopic interface velocities are
strongly correlated with the time rate of saturation change.

Variation of macroscopic interfacial velocity with satura-
tion, in an averaging domain, is nonmonotonic, having a
maximum in the intermediate saturations.

[66] These analyses lead us to a new understanding that
including gradient of interfacial area and the gradient of sat-
uration in the new equations can implicitly account for the
moving boundary between the two fluids during drainage.
This feature is absent in the classical equations for two-
phase flow. Dependence of the new parameters on fluid and
porous medium properties is an important issue, which
should be investigated in future. It must be noted that here
we did not investigate the nonequilibrium capillarity effect
(the second term in the right-hand side of equation (7)) as
this was done extensively in the earlier work by Joekar-
Niasar et al. [2010a] and Joekar-Niasar and Hassanizadeh
[2010].
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