

4th International Conference on Geotechnical and Geophysical Site Characterization Recife, Brasil – September 2012

Combined use of Geophysical Methods for Geotechnical Site Characterization

(ITALY)

Outline

- Geophysical methods
 - Scope and potential for geotechnical and geoenvironmental characterization
 - In-hole vs surface methods
- Combined use
 - Different levels of integration
- Case histories
 - Levees
 - Seismic site response
 - Landslides

Geophysical parameters

Geophysical methods are indirect surveying techniques based on measurements carried out **on the ground surface or in holes**. They allow the distribution of physical properties of the subsurface to be estimated and correlated with engineering information.

- Density
- Electrical Conductivity (or Resistivity)
- Electrical Permittivity
- Magnetic Suscettibility
- Chargeability
- Seismic velocities (Elastic Moduli)

Geotechnical and geoenvironmental site characterization

In the context of site characterization for engineering purposes, the role of geophysical methods is twofold:

- evaluation of geometrical boundaries to model subsoil conditions (e.g. stratigraphy but also physical inclusions or hydrogeological features);
- evaluation of physical/mechanical parameters of direct use for geotechnical modeling.

Identification of stratigraphic sequence / local litography

Seismic methods: e.g. seismic reflection to identify an acquifer

In combination with conventional investigation:

e.g. boreholes logs allow calibration / identification of litography geophysical surveys allow for 2D/3D extension

ISC4 Recife, Brasil 18th September 2012

Identification of stratigraphic sequence / local litography

Non-seismic methods: e.g. electrical methods to identify clays below sands

Powerful tools to investigate lateral variations at the site (e.g. for assessing the potential for differential settlements)

Hydrogeological / environmental applications

Electrical Resistivity Tomography (ERT)

Monitoring in environmental applications

20 min

30 min

80 min

Example:

3D resistivity tomography on lab soil samples for diffusion of conductive plume monitoring. (Comina et al., 2011).

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Geotechnical and geoenvironmental site characterization

In the context of site characterization for engineering purposes, the role of geophysical methods is twofold:

- evaluation of geometrical boundaries to model subsoil conditions (e.g. stratigraphy but also physical inclusions or hydrogeological features);
- evaluation of physical/mechanical parameters of direct use for geotechnical modeling.

Seismic methods

In a linear elastic medium

$$G = \rho V_s^2$$

 $G_0 = \rho V_S^2$

3D V_s model

ISC4 Recife, Brasil 18th September 2012

Soil porosity from seismic velocities

Leaning Tower of Pisa site

Non seismic methods

Quantitative use of geophysical parameters other than seismic velocities is less straightforward and typically require the use of empirical correlations with geotechnical parameters

Example: electrical conductivity of soils

Trasport parameter related to:

- fluid properties (solubility of ionic species, concentration); σ_w : pore fluid conductivity
- mineralogy and specific surface of the solid grains;
- porosity and fabric

Archie	$\sigma_t = \sigma_w n^m S_r^p$	<i>n</i> : porosity	S: saturation
Bruggeman	$\sigma_t = \sigma_w n^{3/2}$	<i>m</i> = 3/2 : the	eoretical
Waxman & Smits	$\sigma_t = X (\sigma_w + \sigma_s)$	$\sigma_{ m s}$: clay surfa	ace conductivity

ISC4 Recife, Brasil 18th September 2012

In-hole vs surface methods (Invasive vs Non-invasive methods)

Cross-Hole Test (CHT) Down-Hole Test (DHT) Seismic Cone (SCPT) Seismic Dilatometer (SDMT) P-S Suspension Logging Vertical Seismic Profiling (VSP)

Surface Waves Methods SWM (SASW, MASW, microtremors) Seismic Refraction (P-waves or SH-waves) Seismic Reflection (P-waves or SH-waves)

In-hole vs surface methods

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI POL

	In-ho	le vs surface methods	5
--	-------	-----------------------	---

	Invasive Tests	Non-Invasive Tests	
	Direct measurements: simple and accurate interpretation	Costs and flexibility (in time and space)	
Advantages	Good resolution also at great depth	Non-intrusive (e.g. important for waste landfills)	
	Easier standardization	Average properties (dynamic	
	Additional information from borehole logging or the	deposit)	
	penetration of the cone	Large volumes are investigated	
Disadvantages	Costs and necessity of planning well in advance	Complex interpretation (indirect measurements based on inversion	
	Local measurement	procedures or heavy processing)	
		Accuracy and resolution at depth	

Flexibility of Surface Methods

U. Texas - Austin

Deep exploration large amplitude signals → reliable data at very low frequency

ALL FIT IN A BACKPACK

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Inverse methods

From the **measurement along a boundary** we want to estimate the **properties inside the medium**

Solution non-uniqueness

(equivance of several possible solutions with respect to the experimental data)

Example: solution non uniqueness in surface wave analysis

Additional information can help in contraining the solution

Combined use of geophysical methods

Synergies between different techniques can be exploited at different level of integration:

- Level 1: comparison for validation / calibration
- Level 2: data integration and data fusion (combining different information on the same medium)
- Level 3: a priori info (one method help the other)
- Level 4: joint inversion (simultaneous interpretation of different dataset)

Level 1: Comparison In-Hole methods vs SASW

ISC4 Recife, Brasil 18th September 2012

Level 1: SASW vs Invasive Methods

$$V_{S,30} = \frac{30}{\sum_{i=1..N} \frac{h_i}{V_{S,i}}}$$

EC8

Seismic subsoil classification

Soil class	V _{s,30}
Α	> 800
В	360 - 800
С	180 - 360
D	< 180
E (C, D su A)	

(Comina et al., 2011)

ISC4 Recife, Brasil 18th September 2012

Pugin et al., 2009

Combined use

- Level 1: comparison for validation
- Level 2: data fusion
- Level 3: a priori info
- Level 4: joint inversions

Example: synergies of seismic refraction and surface wave analysis (SWM)

Example of synergy: SW + V_P refraction

Same testing setup and equipment

Experimental data contain both surface waves and direct/refracted P waves

P-WAVE REFRACTION

ISC4 Recife, Brasil 18th September 2012

ISC4 Recife, Brasil 18th September 2012

The inverse problem

Objective: to find the set of model parameters such that the difference between numerical and experimental dispersion curve is the least

 Model: Stack of linear elastic layers
 700

 $H_1 =? Vs_1 =?$ 600

 $H_2 =? Vs_2 =?$ 500

 $H_3 =? Vs_3 =?$ 400

 $Vs_{\infty} =?$ 300

Usually v_i and ρ_i are fixed and H_i and G_i (or V_{Si}) are the unknowns

Critical aspect: illposedness of mathematical inverse problems

Water Table Influence

	Dry Soil	Sat Soil	
Soil Density	1.2 ÷2.0	1.8 ÷2.3	Weight of water filling the voids
Poisson Ratio v	0.1÷0.3	≈ 0.4 9	Undrained behavior at low frequency (f<100Hz) → no volumetric strain

Experimental Data

ISC4 Recife, Brasil 18th September 2012

Level 4: joint inversion

(Piatti et al., 2012b)

A single inversion problems is solved considering all the available experimental information: the best fit parameters for both VP and VS models are obtained

A single misfit parameter include misfit on Rayleigh wave dispersion curve and P-wave travel times

$$L = \left(\frac{1}{N+M+A} \left[\left(\mathbf{d}_{obs} - \mathbf{g}(\mathbf{m}) \right)^{T} \mathbf{C}_{obs}^{1} \left(\mathbf{d}_{obs} - \mathbf{g}(\mathbf{m}) \right) \right] \right)$$
$$\mathbf{d}_{obs} = \left[\left(\log(V_{R1}), \log(V_{R2}), \dots, \log(V_{RN}) \right) \left(\log(t_{1}), \log(t_{2}), \dots, \log(t_{N^{*}}) \right) \right]$$
$$\mathbf{g}(\mathbf{m}) = \begin{bmatrix} \mathbf{g}_{SW}(\mathbf{m}) \\ \mathbf{g}_{PR}(\mathbf{m}) \end{bmatrix} \qquad \mathbf{m} = \left[\left(\log(h_{1}), \log(h_{2}), \dots, \log(h_{n}) \right) \left(\log(V_{S1}), \log(V_{S2}), \dots, \log(V_{Sn+1}) \right) \\ \left(\log(V_{P1}), \log(V_{P2}), \dots, \log(V_{Pn+1}) \right) \right]$$

Example on synthetic data

ISC4 Recife, Brasil 18th September 2012

Example on synthetic data

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Experimental data

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Experimental data

Case History #1

Combination of seismic and electrical methods for the assessment of site conditions for seepage analysis along an embankment

- Combination of several methods for reliable evaluation of cover thickness
- Joint inversion to improve accuracy

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Seepage potential

Floods very often start with localized seepage that can degenerate causing inundations

10 extreme events each 100 years

Levees for a total length over 2400 km

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Seepage potential

Geology: alluvial deposits: recent sands, gravel, clay TARGET: clayey layer: continuity, thickness

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Geophysical investigation

large extension of the areas Interest in fast geophysical tests from the surface

At a test site several methods have been tested and compared

> VES ERT HEP SWM P_{refr} SH_{refr}

Combined use of geophysical methods for geotechnical site characterization

Joint inversion VES + MASW

Physical parameters: shear velocity and resistivity Assumed parameter distribution: stack of homogeneous isotropic layers

MODEL PARAMETERS:

LINK BETWEEN THE TWO MODELS: geometry, thickness of the layers (same position of interfaces: independent variations of the two parameters, a variation of resistivity does not imply a variation of seismic shear velocity)

From 4n-2 to 3n-1 unkowns with the same experimental information

Combined use of geophysical methods for geotechnical site characterization

ISC4 Recife, Brasil 18th September 2012

Field test results

(Comina et al., 2004)

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Case history #2

Building a shear wave velocity model for seismic site response studies

- Combination of different techniques for validation
- Exploitation of the information in the seismic dataset with different methodologies
- Integration of information

Numerical simulations of seismic site response

A B C D E Surface wave tests

Lasa | Lasa || reflection profiles

DH2

DH1 DH2 Down Hole tests

DH1

Case Study: La Salle, Italy

Alluvial Fan

Materials with very heterogenous composition: there are not many other option for the characterization

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

POLITECNICO DI TORINO

PRAZ-EK

Active+Passive - SW Tests

Example: La Salle (site E)

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Seismic reflection vs. SWM (A+P)

Surface waves confirm that second reflection is the bedrock.

Case history #3

Investigation of volcanoclastic slopes

- Combination of several in situ geophysical tests to increase the reliability of the results
- Combination of laboratory and in situ testing for the assessment of saturation conditions

Flowslides of 1998 in Campania

ISC4 Recife, Brasil 18th September 2012

SEBASTIANO FOTI

Sarno

(Cascini et al., 2008)

(Cascini et al., 2008)

Cover soils formed by volcanic ashes from the Vesuvio (few meters thick) over a carbonatic bedrock

ISC4 Recife, Brasil 18th September 2012

Site characterization

Objectives

- Quantification of potential volume of the flow (for the design of mitigation infrastructures): thickness of the soil cover
- Prevision of onset of the flowslide: assessment and monitoring of saturation condition of the soil cover

Critical issues

- Very difficult site logistics with steep and vegetated slopes poses strong limitations in the use of conventional site tests (boreholes and penetration testing)
- Necessity of investigating large areas

Combination of different geophysical approaches

ISC4 Recife, Brasil 18th September 2012

Comments

- Electical and seismic (V_{P}) tomography show that the assumption of a layered medium in MASW is reasonable
- Inversion of MASW shows the relevance of higher modes at this site: surface wave analysis is not a simple and straightforward task
- The estimated thickness of the cover material is comparable with different

ISC4 Recife, Brasil 18th September 2012

Laboratory calibration of Archie's law for unsat materials

The two exponet *m* and *p* are found by fitting laboratory data

Mapping resistivity into degree of saturation

Closing remarks

- Importance of choosing the right technique for the specific application
- Integration of different techniques reduces uncertainties
- Laboratory experimental can provide a framework and calibration for quantitative interpretation of field tests

Thank you for your attention

Acknowledgments

Prof. Laura Valentina Socco (DIATI - Politecnico di Torino) Dr Cesare Comina (University of Torino) Dr Renato Cosentini (Politecnico di Torino) Ms Flora Garofalo (PhD student at Politecnico di Torino)

Dr Margherita Maraschini (now at Fugro - UK) Dr Daniele Boiero (now at Western-Gico - UK) Dr Claudio Piatti (now at D'Apollonia - Italy)

Dr Claudio Strobbia (now at Western-Gico - UK)

References

- 1. Borsic A., Comina C., Foti S., Lancellotta R., Musso G. (2005) "Imaging heterogeneities with Electrical Impedance Tomography: laboratory results", Geotechnique, vol. 55 (7), 539-547
- 2. Comina C., Cosentini R., Della Vecchia G., Foti S.,and Musso G. 2011. 3D-Electrical Resistivity Tomography monitoring of chemical diffusion in homogeneous and layered soil samples, *Acta Geotechnica, Springer, 6, 195-203*
- 3. Comina C., Foti S., Boiero D. & Socco L.V. 2011. Reliability of VS,30 evaluation from surface waves tests *Journal of Geotechnical and Geoenvironmental Engineering*, *137*, *6*, *557*-632
- 4. Comina C., Foti S., Socco L.V., Strobbia C. 2004. Geophysical characterization for seepage potential assessment along the embankments of the Po River. *Proc. ISC-2 on Geotechnical and Geophysical Site Characterization, Viana da Fonseca & Mayne (eds.), Millpress, Rotterdam, 451-458*
- Cosentini, R.M., S. Foti, G. Sorbino, 2012. Combined use of geophysical tests for the characterization of a pyroclastic slope, in Geotechnical and Geophysical Site Characterization 4, Eds R.Q. Coutinho & P.W. Mayne, CRC Press, Leiden (NL), ISBN 978-4-415-62136-6, 1395-1402
- 6. Foti S., Comina C., Boiero D. 2007. Reliability of combined active and passive surface wave methods, RIG, Vol. 41 (2), 39-47
- 7. Foti S., Comina C., Boiero D., and Socco L.V. 2009. Non uniqueness in surface wave inversion and consequences on seismic site response analyses, *Soil Dynamics and Earthquake Engineering*, 29 (6), 982-993
- 8. Foti S., Lai C.G., Lancellotta R. 2002. Porosity of Fluid-Saturated Porous Media from Measured Seismic Wave Velocities, *Geotechnique, vol. 52 (5), 359-373*
- 9. Foti, S., and C. Strobbia, 2002, Some notes on model parameters for surface wave data inversion: *Proc. of SAGEEP 2002,* Las Vegas, USA, February 10-14, CD-Rom
- 10. Martínez-Pagán P., Faz A. & Aracil E. 2009. The use of 2D electrical tomography to assess pollution in slurry ponds of the Murcia region, SE Spain. *Near Surface Geophysics, 2009, 49-61*
- 11. Piatti C., Boiero D., Foti S., and Socco L.V. 2012b Constrained 1D joint inversion of seismic surface waves and P-wave refraction traveltimes. *Geophysical Prospecting, DOI: 10.1111/j.1365-2478.2012.01071.x*
- 12. Piatti C., S. Foti, L.V. Socco, D. Boiero 2012a. 3D shear wave velocity model of Tarcento Basin, *Bulletin of the Seismological Society of America, in press*
- 13. Pugin A.J.-M., Pullan S.E., Hunter J.A. and Oldenborger G.A., 2009, Hydrogeological prospecting using P- and S-wave landstreamer seismic reflection methods, *Near Surface Geophysics*, *315-327*.
- 14. Socco, L.V., D. Boiero, C. Comina, S. Foti, and R. Wisén, 2008, Seismic characterisation of an alpine site: *Near Surface Geophysics, 6, 253-265.*
- 15. Turesson A. and Lind G. 2005. Evaluation of electrical methods, seismic refraction and ground-penetrating radar to identify clays below sands Two case studies in SW Sweden. *Near Surface Geophysics, 2005, 59-70*

ISC4 Recife, Brasil 18th September 2012