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Seismic ground response analyses (GRAs)

A seismic hazard study accounts for all the complex factors that control the 
expected ground motion at a site.

These are generally grouped into the source, path, and site effects

(Passeri 2019)

Seismic hazard for the reference
condition (rock outcrop)
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Seismic ground response analyses (GRAs)

The amount of epistemic 
uncertainties is dramatically 
dependent on the specific 

GRA application

1D numerical simulations (termed GRAs) can 
estimate the mean amplification function for a site
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Motivation for stochastic analysis

Stochastic analyses are based on a large population of ground models. They
can be useful for:
• Provide an estimation of uncertainties of the results in site specific ground

response analyses
• Build databases of ground response analyses to derive typical features of 

the results for simplified approaches and methodological comparisons

Geostatistical models are required for building meaningful and 
representative populations of ground models.

It is of paramount importance that the ground models in the population are 
realistic
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Uncertainties in Seismic Site Response analyses

(m
odified from

 Rathje et al. 2010)

It is almost impossible to a-priori determine the most 
influent source of uncertainty in the final result
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Uncertainties in Seismic Site Response analyses
The shear wave velocity profile is 
the input parameter that governs 

the wave propagation in the 
elastic medium 

This parameter has to be estimated 
via in-situ geophysical tests 

(Stewart et al. 2014)

Linear viscoelastic analyses 
are essential for a first 

validation of the deposit 
behavior as a small-strain site 

signature to be compared 
with experimental evidence
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Geostatistical techniques rely on statistical models 
that are based on random field theory to model the 

uncertainty associated with spatial estimation

Definition of the statistical model able to reproduce
the experimental uncentainties and variabilities
 statistical sample of VS to be used in GRAs

Randomization

Performance of Hazard-Consistent GRAs 
for Ground Motion Prediction and rigorous 

Site-Specific PSHAs 

 probabilistic modeling of site effects

VS (m/s)

The shear wave velocity (VS)
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 Multiple VS profiles from surface wave and invasive
methods are available

 The participants of the project analyzed a set of common
surface waves data. Both active and passive data were
collected close to the boreholes

 Several participants also performed and interpreted
invasive measurements. Several companies repeated
measurements in order to assess repeatability with
different acquisition strategies and equipment

 Results of the blind tests in Garofalo et al., 2016 SDEE:

 part I: surface wave tests;

 part II: inter-comparison SWM vs invasive

Case study: Mirandola (Italy) 
Emilia 

Earthquake
2012 

(Mw=5.9)

Geol. Info.: Soft Soil
Alluvial deposits
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Mirandola’s geology mainly consists of 
alternating silty clays and sandy horizons till 100 
m depth, where the pliocene bedrock is 
approximately located.

Additional independent information at the site:
• Experimental Transfer Function (ETF) from a 

permanent down-hole array (Laurenzano et 
al., 2017)

• f0 from HVSR (Tarabusi et al., 2018)

(Garofalo et al. 2016, SDEE)

Case study: Mirandola (Italy) 
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(Passeri et al. 2019a)

Invasive + mean Non-invasive + mean
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VS profiles from Interpacific Blind test

Case study: Mirandola (Italy) 



Stochastic analysis of seismic ground response – Sebastiano Foti et al.

Case study: Mirandola (Italy) 

Invasive Non-invasive

Experimental Transfer Functionf0 peak from HVSR

(Passeri et al. 2019a and Laurenzano et al. 2017)
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Theoretical Transfer Functions from VS profiles of Interpacific Blind test SWM
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BASE CASE

(Passeri et al. 2020)

one of the profiles of the blind test (UTexas - Cox) has been selected as the base case
(i.e. as if it was ideally the only experimental Vs profile available at the site for GRA) 

Base case
Interpacific SWM

Base case
Experimental TF 
f0 from HVSR  

harmonic average
profiles

Case study: Mirandola (Italy) 
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(Passeri et al. 2020)

ALEATORY VARIABILITIES-Randomization with the Toro Model (1995)

Base case
Random profiles
Interpacific SWM

Base case
Random profiles
Experimental TF 
f0 from HVSR  

Base case
Random profiles
Interpacific SWM

Case study: Mirandola (Italy) 
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DISPERSION CURVES
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(Passeri et al. 2020)

Note that the upper/lower range 
bounding profiles are only a 

special case of the randomization 
model, assuming a perfect 

correlation and a fixed 
logarithmic standard deviation

EXPERIMENTAL SITE SIGNATURES

TORO MODEL (1995) UPPER/LOWER RANGE

BASE-CASE EDC

Case study: Mirandola (Italy) 
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New geostatistical model (Passeri 2020)

harmonic average
profiles

Continuous 
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Case study: Mirandola (Italy) 



Stochastic analysis of seismic ground response – Sebastiano Foti et al.

New geostatistical model (Passeri 2020)
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Case study: Mirandola (Italy) 

The main improvement of the geostatistical model regards the use of VS,z and ttS,z. 

The model assumes a neat separation between the basic physical quantities:

TIME-SPACE

This approach is more consistent with the experimental measurements (variables time and 
space are independent).

When we randomize the interval velocity, we are introducing parasite (multiple) uncertainties 
with both a spatial and a time variable included the interval velocity and then a second spatial 

variable for the position of the interfaces.
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EXPERIMENTALLY-BASED CALIBRATION WITH 
71 SWM SITES INCLUDED IN THE PSWD 

It is practically impossible to distinguish 
EUs and AVs in SWM results
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New geostatistical model (Passeri 2020)

Case study: Mirandola (Italy) 
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(Passeri et al. 2020)
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Base case

Rnd Toro model

Exp TF DH array

Rnd Passeri model
Upper-lower models

f0 from HVSR

Base case  (exp)

Rnd Toro model
Interpacific SWM (exp)

Rnd Passeri model
Upper-lower models

The random profiles generated with the new geostatistical 
model (Passeri, 2020) honor the whole set of independent 
experimental data available at Mirandola site

Case study: Mirandola (Italy) 
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SURFACE RESPONSE SPECTRA

(Passeri et al. 2020)
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Stochastic EQL analyses adopting 8 input motions scaled @0.5g for each profile realization

Base case (deterministic)
Upper and lower bound profiles (EPRI 2013)
1000 profiles from Toro model (1995)
1000 profiles from Passeri model (2019)

EPISTEMIC UNCERTAINTIES-Upper/Lower range bounding profilesALEATORY VARIABILITIES-Randomization with the Toro Model (1995)New geostatistical model (Passeri 2019)BASE-CASE

Base case

Rnd Toro model

Rnd Passeri model

Upper-lower models

Case study: Mirandola (Italy) 
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MASW and DHT tests were
performed to get the Vs model

Open Access

Bulletin of Earthq. Eng. BEE 2018

The Roccafluvione site
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The Roccafluvione site

This example shows the effect of uncertainties on the 
site response, with focus on the role of site 
characterization (VS profile from field tests and MRD 
curves from the lab)
 Ground models: statistical sample of 1,000 

ground models, with VS profile randomized 
according to the geostatistical model  
implemented in Passeri (2020) and MRD curves 
from the model by Ciancimino et al. (2019);

 Input motions: collection of 7 acceleration time 
histories, compatible with the seismological 
features of the Roccafluvione site;

 Type of analysis: Equivalent Linear (EQL) 
approach, with the DEEPSOIL software;
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This example shows the effect of uncertainties on the 
site response, with focus on the role of site 
characterization (VS profile from field tests and MRD 
curves from the lab)
 Ground models: statistical sample of 1,000 

ground models, with VS profile randomized 
according to the geostatistical model  
implemented in Passeri (2020) and MRD curves 
from the model by Ciancimino et al. (2019);

 Input motions: collection of 7 acceleration time 
histories, compatible with the seismological 
features of the Roccafluvione site;

 Type of analysis: Equivalent Linear (EQL) 
approach, with the DEEPSOIL software;

The Roccafluvione site
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The Roccafluvione site

This example shows the effect of uncertainties on the 
site response, with focus on the role of site 
characterization (VS profile from field tests and MRD 
curves from the lab)
 Ground models: statistical sample of 1,000 

ground models, with VS profile randomized 
according to the geostatistical model  
implemented in Passeri (2020) and MRD curves 
from the model by Ciancimino et al. (2019);

 Input motions: collection of 7 acceleration time 
histories, compatible with the seismological 
features of the Roccafluvione site;

 Type of analysis: Equivalent Linear (EQL) 
approach, with the DEEPSOIL software;
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Iter. 1
Iter. 2

Iter. n

0.65γmax

γmax

The Roccafluvione site

This example shows the effect of uncertainties on the 
site response, with focus on the role of site 
characterization (VS profile from field tests and MRD 
curves from the lab)
 Ground models: statistical sample of 1,000 

ground models, with VS profile randomized 
according to the geostatistical model  
implemented in Passeri (2019) and MRD curves 
from the model by Ciancimino et al. (2019);

 Input motions: collection of 7 acceleration time 
histories, compatible with the seismological 
features of the Roccafluvione site;

 Type of analysis: Equivalent Linear (EQL) 
approach, with the DEEPSOIL software;
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 Separation between the fundamental quantities of
space and time, which avoid the generation of parasitic
uncertainties  avoid the generation of “unrealistic”
models

 Calibrated with a high-quality database of surface wave
experimental measurements

 The model is flexible as it is based on a global architecture
that can be adapted to other seismic tests (e.g., Down-Hole
tests)

THE MODEL OVERCOMES THE DRAWBACKS OF THE USUAL
METHODS ADOPTED FOR TECHNICAL AND SCIENTIFIC
APPLICATIONS AND DESCRIBED IN EPRI (2013).

Geostatistical model for the management of 
uncertainties: Passeri, 2020

Shear wave velocity profile
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 Model proposed by Ciancimino et al. (2019) to describe the MRD curves. It is a specialized version of the
Darendeli (2001) model, adapted to capture the specific behavior of soils from Central Italy.

 Study developed within the framework of SM studies carried out after the Central Italy seismic sequence, several
universities involved in the project.

 The database includes information from 79 cyclic tests carried out on clays and silts of low plasticity with PI
ranging from 0 to 45% representative of the soils in the region

Locations of the investigated sites

Casagrande chart

Modulus Reduction & Damping Curves
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Modulus Reduction & Damping Curves
 MR curves described through a modified version of the hyperbolic model proposed by Stokoe et

al. (1999), as a function of PI and σ’m

 Small-strain damping ratio modelled taking into account separately the influence of PI, σ’m, and f
 D curves modelled assuming the Masing (1926) criteria and fitting the experimental data through

an adjusting function
 It provides information on the statistical dispersion of the results, which can be used to quantify the

uncertainty affecting the MRD curves.
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The soil model exhibits an amplification of the ground motion at all vibration periods, with a peak at 0.25 s.

Elastic response spectra Amplification functions

Results: Acceleration Spectra
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Paolucci et al., 2021

Generation of the database: VS profiles

Dataset of 252 real soil profiles
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Paolucci et al., 2021
Randomization of each VS profile (geostatistical 

model by Passeri, 2019)

Generation of the database: VS profiles
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Paolucci et al., 2021
Randomization of each VS profile (geostatistical 

model by Passeri, 2019)

Generation of the database: VS profiles
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Paolucci et al., 2021
Selection of VS profiles (homogeneity and equal 

representativeness)

Generation of the database: VS profiles
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Generation of the database: other mechanical parameters
Clay Sand Gravel Rock

Modulus Reduction and 
Damping Curves (MRD) Darendeli (2001) Darendeli (2001) Rollins et al. (1998) Sun and Idriss (1991)

Plasticity index PI Random extraction between 30, 
50, 75 and 100

Random extraction between 0 and 
15 0 0

Over-Consolidation Ratio OCR

- VS < 250 m/s: OCR = 1

- VS = 250÷600 m/s:

OCR = 4

-VS > 600 m/s: OCR = 16

(Pettiti et al., 2013)

OCR = 1 Not required Not required

At-rest lateral pressure 
coefficient K0

K0 = K0,NCOCRα

K0,NC = 0.43+0.0042×PI (1)

- PI ≤ 15: α = 0.42

- PI ≥ 30: α = 0.32

(Massarsch, 1979; Ladd et al., 1977)

K0 = 1 – sinφ’

φ’ = 33°

(Jàky, 1944)

Not required Not required

Unit weight γ

γ = nγs + (1-n)γw

n = 1.396 – 0.160 × lnVS (2σn = 
±0.13) (Hunter, 2003)

γs = 26.5 kN/m3

γw = 10 kN/m3

γ = nγs + (1-n)γw

n = 1.396 – 0.160 × lnVS (2σn = 
±0.13) (Hunter, 2003)

γs = 26.5 kN/m3

γw = 10 kN/m3

γ = nγs + (1-n)γw

n = 1.396 – 0.160 × lnVS (2σn = 
±0.13) (Hunter, 2003)

γs = 26.5 kN/m3

γw = 10 kN/m3

γ = 22 kN/m3

Ground water depth Random extraction from uniform distribution

Aimar et al., 2020
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Generation of the database: definition of input motions

Aimar et al., 2020
Paolucci et al., 2021

Selection of 5 sites, representative of different 
levels of seismic hazard in Italy
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Generation of the database: definition of input motions

For each site, 7 natural acceleration time 
histories were selected, complying with the 

spectral compatibility Aimar et al., 2020
Paolucci et al., 2021
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Generation of the database: numerical simulations

Generation of ground models:
→ 91’500 soil models

Selection of input motions:
→ 35 acceleration time histories

EL GRAs (SHAKE91;
Sun and Idriss, 1991)

Verification of 
the draft EC8-1

Soil models with VS,bed <= 900 m/s

35 acceleration time histories

Paolucci et al., 2021



Stochastic analysis of seismic ground response – Sebastiano Foti et al.

POLITECNICO DI TORINOGEE webinar, 24 March 2022

Generation of the database: numerical simulations

Aimar & Foti, 2021

Generation of ground models:
→ 91’500 soil models

Selection of input motions:
→ 35 acceleration time histories

EL GRAs (SHAKE91;
Sun and Idriss, 1991)

Verification of 
the draft EC8-1

Soil models with VS,bed <= 900 m/s

35 acceleration time histories

10’150 representative soil models

35 (+ 7 high-intensity) acceleration time
histories

EL GRAs (SHAKE91;
Sun and Idriss, 1991)

+
NL GRAs (DEEPSOIL v7,0;

Hashash et al., 2017)

NL vs EL GRAs

Paolucci et al., 2021
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Generation of the database: amplification parameters

Aimar & Foti, 2021
Paolucci et al., 2021

PGA 
amplification

Spectral
amplification
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Generation of the database: amplification parameters

Aimar & Foti, 2021
Paolucci et al., 2021

PGA 
amplification

Spectral
amplification

Verification of the draft EC8-1 NL vs EL GRAs

• PGAA
• SPSA: T = 0.1 - 0.5 s
• IPSA: T = 0.4 - 0.8 s
• LPSA: T = 0.7 - 1.1 s

→ Simpl. geotechnical studies
→ Short buildings
→ Intermediate buildings
→ Tall buildings studies

• Fα: T = 0.07 - 0.4 s
• Fβ: T = 0.7 - 2.0 s

→ Equivalent to «true» Fα
→ Equivalent to «true» Fβ

s

r

PGA
PGAA

PGA
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Draft EC8-1: Subsoil classification schemes

Paolucci et al., 2021
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Draft EC8-1: Subsoil classification scheme
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800 400 250 150

Standard 
classification scheme
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Draft EC8-1: Site amplification factors (SAF)

Paolucci et al., 2021

• Fa: SAF of the constant
acceleration spectral plateau at
short periods

• Fb: SAF of the T=1s spectral
ordinate

• Continous formulations with 
VS, H (and H for class E)

• Dependancy from the seismicity
of the area through ra and rb
(nonlinear effects)

• Default cautelative values in 
absence of proper
characterization
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Draft EC8-1: Site amplification factors (SAF)

Paolucci et al., 2021

Low seismicityHigh seismicity
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Draft EC8-1: Verification of the classification scheme

Paolucci et al., 2021

Intra-category dispersion of the SAF significantly reduced through the new classification scheme

Logarithmic standard deviation of the amplification factors for medium seismicity site
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Draft EC8-1: Verification of the SAF

Paolucci et al., 2021Comparison between simulated and predicted Fa at a medium seismicity site

D C B

F

AE

A

A

Fa

• Good agreement 
between simulated
and predicted values

• Deamplification for 
highly deformable
profiles due to strong 
nonlinear effects:
estimation of draft 
EC8-1 on the safe side
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Draft EC8-1: Verification of the SAF

Paolucci et al., 2021

Fb

• Good agreement 
between simulated
and predicted values

• Deamplification for 
highly deformable
profiles due to strong 
nonlinear effects:
estimation of draft 
EC8-1 on the safe side

• Nonlinear effects less
relevant at large 
periods

Comparison between simulated and predicted Fa at a medium seismicity site

D C B

F

AE

A

A
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Numerical approach

EL NL

(after Zalachoris e Rathje 2015)

NL vs EL GRAs: GRAs uncertainties

Aimar & Foti, 2021
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NEED TO IDENTIFY CONDITIONS AT WHICH THE EL AND
THE NL SCHEMES START TO DIVERGE SIGNIFICANTLY

T (s)

ISSUES
Results based on a small 
group of soil models 
and/or simplified synthetic 
models
The threshold often 
ignored the specific 
features of the subsoil 
models (Aristizábal et al., 
2018)

Numerical approach

EL NL

(after Zalachoris e Rathje 2015)

Kim et al. (2013)

Goal: derive simplified criteria to predict when the entity of the EL-NL
differences becomes relevant

NL vs EL GRAs: GRAs uncertainties

Aimar & Foti, 2021
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ln:max E
X X
          ln EL

X
NL

X

X
 

Quantification of differences

Where X is PGAA, SPSA, IPSA or LPSA.

Criterion of assessment of differences

Standard deviation of the
amplification parameter,
from GMPEs (Aimar et al.,
2021)NOTE: δX > 0 → EL «>» NL

 , ,maxX X X
 

     

NL vs EL GRAs: Inter-method differences

Representative value of δX,
accounting for its statistical
distribution

Aimar & Foti, 2021
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ln:max E
X X
          ln EL

X
NL

X

X
 

Quantification of differences

Where X is PGAA, SPSA, IPSA or LPSA.

Criterion of assessment of differences

Standard deviation of the
amplification parameter,
from GMPEs (Aimar et al.,
2021)NOTE: δX > 0 → EL «>» NL

 , ,maxX X X
 

     

NL vs EL GRAs: Inter-method differences

The criterion takes into account the variability of EL-NL differences and it assumes
that the differences are negligible when they are small compared to the
variability typical of the seismic amplification

+
The assessment of differences considers the influence of both soil model
conditions (i.e., VS,H and H) and input motion characteristics

Representative value of δX,
accounting for its statistical
distribution

Aimar & Foti, 2021
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SPSA

T = 0.1-0.5 s

IPSA

T = 0.4-0.8 s

LPSA

T = 0.7-1.1 s
PGAA

• The entity of differences
depends on the investigated
vibration period

• EL e NL compatible for H < 30 m
and for PGA up to 0,15g, even at
higher PGAs at long periods.

NL vs EL GRAs: Simplified criteria

Aimar & Foti, 2021
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Final remarks

• Need for stochastic analysis

• Identification, quantification and management of uncertainties is of primary importance in 
any (geotechnical) engineering application, especially when dealing with (dynamic) non-
linear problems where an a-priori choice of conservative values of the parameters is not 
possible

• Geostatistical methods are useful to manage uncertainties, but it is of foremost 
importance that unrealistic models are avoided (i.e., the models have to comply with 
experimental evidence): overestimation of the variability may lead to unconservative 
results

• Stochastic approaches are useful for single study studies and for the verification of 
simplified approaches in building codes, as for example the new proposed scheme for 
EC8

• EQL and NL approaches provide similar results for stiff soil. A classification scheme is 
proposed to check the consistency of results for the two methods
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