Webinar Series on Geotechnical Investigations

Organized by Indian Institue of Technology Tirupati

Indian Geotechnical Society Tirupati Chapter

&

4th June, 2020

Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

(ITALY)

Email: <u>sebastiano.foti@polito.it</u> www.soilmech.polito.it/people/foti_sebastiano

ToC

- Basic principles of SW analysis
- The Interpacific Guidelines
- Blind test results
- Selected issues on SWM
- Final remarks

ToC

- Basic principles of SW analysis
- The Interpacific Guidelines
- Blind test results
- Selected issues on SWM
- Final remarks

Geometric Dispersion

Resolution of shallow layers

Investigation depth

$$z_{\rm max} \approx \frac{\lambda_{\rm max}}{2}$$

Need for heavy sources (high energy) for deep characterization

SWM techniques for near surface characterization

Survey design for Active-Source tests

- Testing depth \approx 1/2 array length (for active sources)
- Depends on sources and on site characteristics (sledge hammer only for shallow targets especially for soft sites)
- Spatial aliasing depends on receiver spacing (→ mimimum target for shallow layer thickness)

Impact Sources

Webinar IIT & IGS Tirupati, June 4th, 2020

Sebastiano FOTI POLITECNICO DI TORINO

Energy comparison between different impact sources

Large controlled sources (Vibroseis)

Un. Texas at Austin

Un. Arkansas

SWM techniques for near surface characterization

Survey design for Ambient Vibration Analysis

Minimum: 4 receivers Suggested: 8-10 receivers

Usually multiple arrays (especially if few receivers are used)

Aperture of the larger array equal al least the desidered investigation depth (better twice)

Minimum distance in the smaller array equal to desidered resolution of shallow layers

Sebastiano FOTI

POLITECNICO DI TORINO

Active+Passive - SW Tests

Example: La Salle (site E)

The inverse problem

Objective: to find the set of model parameters such that the difference between numerical and experimental dispersion curve is the least

Critical aspect: illposedness of mathematical inverse problems

The forward problem

model (free Rayleigh modes) $H_1 \rho_1 G_1 v_1$ 460 440 $H_2 \rho_2 G_2 v_2$ phase velocity, m/s ⁴²⁰ ³⁸⁰ ³⁴⁰ $H_3 \rho_3 G_3 \nu_3$ Frequent assumption: $\rho_4 \mathbf{G_4} \nu_4$ the fundamental mode is dominant Stack of linear elastic layers 320 300 50 100 0 frequency, Hz

Considering an active source: mode superposition

For simple stratigraphies (stiffness increasing with depth) the fundamental mode is dominant and mode superposition can be neglected

150

Solution of the homogeneous eigenvalue problem

ToC

- Basic principles of SW analysis
- The Interpacific Guidelines
- Blind test results
- Selected issues on SWM
- Final remarks

The guidelines for surface wave analysis of the Interpacific project

Bull Earthquake Eng DOI 10.1007/s10518-017-0206-7

ORIGINAL RESEARCH PAPER

Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project

Sebastiano Foti¹ · Fabrice Hollender² · Flora Garofalo¹ · Dario Albarello³ · Michael Asten⁴ · Pierre-Yves Bard⁵ · Cesare Comina⁶ · Cécile Cornou⁵ · Brady Cox⁷ · Giuseppe Di Giulio⁸ · Thomas Forbriger⁹ · Koichi Hayashi¹⁰ · Enrico Lunedei³ · Antony Martin¹¹ · Diego Mercerat¹² · Matthias Ohrnberger¹³ · Valerio Poggi¹⁴ · Florence Renalier¹⁵ · Deborah Sicilia¹⁶ · Valentina Socco¹

Received: 5 October 2016/Accepted: 30 July 2017 © The Author(s) 2017. This article is an open access publication

https://link.springer.com/article/10.1007/s10518-017-0206-7

Scope of the guidelines

- 1D
- R-waves
- Fundamental mode
- Target: non-expert users
- Not a Standardization for Execution and Interpretation (several alternatives are adequate)
- Acquisition, Processing, Inversion
 - + notes on application to earthquake engineering
- Appendices: advanced topics (array geometries, higher modes, joint inversions, Love waves, ReMi, attenuation and damping)

Philosophy of the guidelines

- A pre-cooked set of rules cannot be defined: the survey has to be designed;
- The design of the survey relies on the knowledge of the surface wave propagation features;
- The quality of the results relies on the quality of the data;
- The capability to assess the respect of the method assumptions is of paramount importance;
- A good professional result means also a well organised workflow and an informative final report with a clear assessment of the quality of the obtained results.

Usual assumptions

- Horizontally layered medium (no lateral variation)
- Only plane Rayleigh waves (far field: body waves contribution negligible)
- Fundamental mode is dominant

It is very important to verify they are consistent with reality Assumption can be relaxed

ToC

- Basic principles of SW analysis
- The Interpacific Guidelines
- Blind test results
- Selected issues on SWM
- Final remarks

InterPacific Project - Journal Publications

InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods
Garofalo et al. (2016a)

F. Garofalo^{a,1}, S. Foti^{a,*}, F. Hollender^b, P.Y. Bard^c, C. Cornou^c, B.R. Cox^d, M. Ohrnberger^e, D. Sicilia^f, M. Asten^g, G. Di Giulio^h, T. Forbrigerⁱ, B. Guillier^c, K. Hayashi^j, A. Martin^k, S. Matsushima¹, D. Mercerat^m, V. Poggiⁿ, H. Yamanaka^o

2)InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part II: Inter-comparison between surface-wave and borehole methods Garofalo et al. (2016b)

F. Garofalo^{a,1}, S. Foti^{a,*}, F. Hollender^b, P.Y. Bard^c, C. Cornou^c, B.R. Cox^d, A. Dechamp^e, M. Ohrnberger^f, V. Perron^b, D. Sicilia^g, D. Teague^d, C. Vergniault^g

Interpacific Project: borehole and surface seismic tests

Surface Wave TEAMS

Experimental data collected by Politecnico di Torino (active source) and CEA (microtremors), subsequently distributed to 14 very experienced teams

ID	Label	Participants	Country	
1	MU	Michael Asten, Monash University	Australia	
2	CE	CEREMA	France	
3	IST1	IST1 – Cornou, ISTerre	France	
4	UT	Brady Cox, University of Texas	USA	
5	INGV	Giuseppe di Giulio, INGV	Italy	
6	BFO	Thomas Forbriger, Black Forest Observatory	Germany	
7	Geom	Koichi Hayashi, Geometrics	USA	
8	IST2	Bertrand Guiller, ISTerre	France	
9	KU	Shinichi Matsushima, Kyoto University	Japan	
10	тт	Hiroaki Yamanaka, Titech	Japan	
11	GV	Antony Martin, Geovision	Italy	
12	SED	Valerio Poggi, SED ETH	Switzerlan d	
13	PU	Mathias Ohrnberger, Postdam University	Germany	
14	PT	Politecnico di Torino Italy		

- ✓ Linear array for MASW
- Circular, triangular and Lshape arrays for AVA (Ambient Vibration Analysis)

Invasive TEAMS

Measurements repeated by each operator and interpreted by himself (except the team of UT Austin, which has been working on GeoVision exp data)

Expert operators with high quality equipment

ID	Team	CAD	GRE	MIR
1	GeoVision	х	Х	Х
2	Fugro	х	Х	Х
3	Solgeo	х	Х	Х
4	UT (University of Texas)	х	Х	Х
5	RER (Regione Emilia Romagna)			Х
6	UniTo-PoliTo			Х
7	INGV			Х

- ✓ Cross-Hole tests
- ✓ Down-Hole Tests
- ✓ P-S suspension logging

Fig. 2. Mirandola: maps of the arrays. (Left) whole area interested by the acquisition. (Right) close-up view of the area. The largest triangular array is not shown.

Table 4

Mirandola: datasets. T = time window, $\Delta T =$ time sampling,

label	Dataset	Num. channels	Time sampling	Space sampling
AV1	Active (vertical)	48	$T=2$ s, $\Delta T=0.25$ ms	Receiver spacing = 1 m
AV2	Active (vertical)	48	$T=2$ s, $\Delta T=0.25$ ms	Receiver spacing=2 m
AH	Active (horizontal)	24	$T=2$ s, $\Delta T=0.25$ ms	Receiver spacing = 2 m
PC1	Passive circular	15	$T=01:00:00 \Delta T= 5 ms$	Radii=5 and 15 m
PC2	Passive circular	15	$T=01:15:00 \Delta T= 5 \text{ ms}$	Radii = 15 and 45 m
PC3	Passive circular	15	$T=01:13:00 \Delta T= 5 \text{ ms}$	Radii=45 and 135 m
PC4	Passive circular	15	$T=01:58:30 \Delta T= 5 ms$	Radii = 135 and 405 m
PC5	Passive circular	15	$T=01:20:00 \Delta T= 5 ms$	Radii=26 and 78 m
PT	Passive triangular	16	$T=01:29:00 \Delta T= 5 ms$	Sides=12.5, 25, 50, 100, and 200 m
PT2	Passive large triangular	10	$T = 03:24:30 \Delta T = 5 \mathrm{ms}$	Sides=4000, 2000, 1000 m
PL.	Passive L-shape	13	$T=00:59:30 \Delta T= 5 \text{ ms}$	Distances = 5, 10, 30, 60, 100, and 150 m

Webinar IIT & IGS Tirupati, June 4th, 2020 Significant Findings

POLITECNICO DI TORINO

31

Mirandola Site – Vs Profiles – 150 m

Resolution of shallow layers

Investigation depth

Webinar IIT & IGS Tirupati, June 4th, 2020

Sebastiano FOTI
Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

Webinar IIT & IGS Tirupati, June 4th, 2020

Sebastiano FOTI

Evidence of LVL at Grenoble site

Fig. 20 Typical shape of the experimental dispersion curve for a site with a soft layer at depth, as indicated by the trough in phase velocity between 2 and 10 Hz (Grenoble site—InterPACIFIC Project, from combination of active and passive measurements)

Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

All Sites: Invasive vs Non-Invasive

ToC

- Basic principles of SW analysis
- The Interpacific Guidelines
- Blind test results
- Selected issues on SWM
- Final remarks

Some critical issues

- Spatial resolution
- A-priori hypothesis
- Non-uniqueness
- Higher modes
- Lateral variations (1D model \rightarrow pseudo 2D)

Limited resolution at depth

Some critical issues

- Spatial resolution
- A-priori hypothesis
- Non-uniqueness
- Higher modes
- Lateral variations (1D model \rightarrow pseudo 2D)

Soil Model

Layered Linear Elastic Medium

4n-1 parameters

Layer Thickness H_i

Soil Density ρ_{i}

Two elastic constants (e.g. Poisson Ratio v_i & Shear Modulus G_i)

In standard practice ρ_i and v_i (or V_{Pi}) are fixed a-priori while H_i and $V_{Si}=\sqrt{(G_i/\rho_i)}$ are the unknowns (2n-1) [Stokoe et al., 1984]

This choice is justified on the basis of the limited range of variation in soils and on the small influence that these parameters seem to have on the dispersion curve (sensitivity analysis by Nazarian, 1984)

Water Table Influence

Unsat Soil Sat Soil

Poisson Ratio v	0.1÷0.3	≈ 0.49	Undrained behavior at low frequency (f<100Hz) → no volumetric strain

Soil Density $1.2 \div 2.0$ $1.8 \div 2.3$ Weight of water filling the voids

Experimental Data

Shear Wave Velocity (m/s)

Webinar IIT & IGS Tirupati, June 4th, 2020

Hp#1 Water table from P-wave refraction Hp#2 No water table Hp#3 Water table deeper than Hp #1

Sebastiano FOTI POLITECNICO DI TORINO

Some critical issues

- Spatial resolution
- A-priori hypothesis
- Non-uniqueness
- Higher modes
- Lateral variations (1D model \rightarrow pseudo 2D)

From the **measurement along a boundary** we want to estimate the **properties inside the medium**

Solution non-uniqueness

(equivance of several possible solutions with respect to the experimental data)

Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

Parameterization

• Under-parameterization (poor fit on the DC) vs

over-parameterization (poor constrain on the results)

• Different assumptions should be tested (especially for local search methods)

(Foti et al., 2018 – Interpacific Guidelines)

Example: solution non uniqueness in surface wave anal

Additional information can help in constraining the solution

Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

Mitigating non-uniqueness: external constrains

Webinar IIT & IGS Tirupati, June 4th, 2020

Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

Numerical simulations of seismic site response

Consequences of non-uniqueness

Consequences on seismic site response

Vs,30: Solution non uniqueness

InterPacific Sites – Vs30 Estimates

V _{S,30}	MIR		GRE		CAD	
	Inv	dc	inv	dc	inv	dc
Mean [m/s] Std [m/s] CoV [-] Max/min [-]	219 ≅ 16.4 0.075 > 1.31	227 7.55 0.033 1.12	364 ≅ 14.7 0.040 > 1.17	381 7.71 0.020 1.08	1591 ≅ 168.5 0.106 > 1.31	1561 142 0.091 1.40

In addition to the formal evaluation for any given $V_{\rm S}$ profile according to Eq. (1) for z=30 m, $V_{\rm S,30}$ can be also estimated directly from the dispersion curve as proposed by Brown et al. [96] according to the equation:

 $V_{S,30} = 1.076 \cdot V_{R,36}$

(2)

in which $V_{R,36}$ is the experimental phase velocity of Rayleigh wave fundamental mode for $\lambda = 36$ m.

Some critical issues

- Spatial resolution
- A-priori hypothesis
- Non-uniqueness
- Higher modes
- Lateral variations (1D model \rightarrow pseudo 2D)

Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project

Bull Earthquake Eng DOI 10.1007/s10518-017-0206-7

See also:

APPENDICES

(electronic supplement material)

https://static-content.springer.com/esm/art%3A10.1007%2Fs10518-017-0206-7/MediaObjects/10518_2017_206_MOESM1_ESM.pdf

Sebastiano FOTI

Influence of higher modes

Higher modes can be often retrieved but are difficult to be included in the inversion because they can hardly be numbered.

Even when a single continuous curve is retrieved and assumed to be the fundamental mode, higher modes can be present and this can drive the inversion into sever pitfalls.

Higher modes contain further information can therefore contribute to better constraints the results.

Apparent dispersion curve (lack of spectral resolution)

Relevance of higher modes

Synthetic data

(Maraschini et al, 2010)

Seismogram

fk spectrum

Fundamental mode inversion

Synthetic data: apparent dispersion curve

Fundamental mode inversion

Synthetic data – 2 modes

Synthetic data: apparent dispersion curve

Determinant approach: multimodal inversion

(Maraschini et al, 2010)

Webinar IIT & IGS Tirupati, June 4th, 2020

Multimodal Montecarlo inversion

Italian Accelerometric Network (RAN) Sestri Levante

(Maraschini and Foti, 2010)

Webinar IIT & IGS Tirupati, June 4th, 2020

Some critical issues

- Spatial resolution
- A-priori hypothesis
- Non-uniqueness
- Higher modes
- Lateral variations (1D model \rightarrow pseudo 2D)

Evidence of Lateral Variation: Active data

Fig. 23 Variability observed in the analysis of subset of experimental data for an active-source linear array. *Left* different portion of the seismograms that were analysed. *Right* the dispersion curves related to these different subsets. (Grenoble site—InterPACIFIC Project)

(Foti et al., 2018 – Interpacific Guidelines)

Fig. 24 Variability of the H/V frequency on all sensors of the array, example from the characterization of the OGMA station of the RAP (French permanent accelerometric network); **a**, **b** HV curves at each stations, **c**, **d** map of the H/V frequency peak; **a**, **c** inner, smallest array; **b**, **d** outer, largest array

(Foti et al., 2018 – Interpacific Guidelines)

Pseudo-2D (3D)

Local approximation of submerged structure with 1D profiles

Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

 C_V = velocity constraint, C_d = depth constraint

Sebastiano FOTI

LINE 1 – shear wave velocity model from groundroll

Seismic characterization of an Alpine site LV Socco, D Boiero, C Comina, S Foti, R Wisén Near Surface Geophysics 6 (4), 255-267

Webinar IIT & IGS Tirupati, June 4th, 2020

Basics and Applications of Surface Wave Techniques for Seismic Site Characterization

3D V_S model

Webinar IIT & IGS Tirupati, June 4th, 2020

Sebastiano FOTI

ToC

- Basic principles of SW analysis
- The Interpacific Guidelines
- Blind test results
- Selected issues on SWM
- Final remarks

Final Remarks

- Need to improve the standard of the practice
- Guidelines may contribute but are not a substitute for experience and skills of the analyst
- Standardization not feasible
- Some issues are still open (e.g. how to deal with higher modes)
- Next step: COSMOS guidelines (wider scope: are supposed to cover a variety of methods for near-surface characterization)
References for SWM

Foti S., Lai C.G., Rix G.J., Strobbia C.L.

"Surface Wave Methods for Near-Surface Site Characterization"

CRC Press - 2014

ISBN: 9780415678766

Webinar Series on Geotechnical Investigations

Organized by Indian Institue of Technology Tirupati &

Indian Geotechnical Society Tirupati Chapter

4th June, 2020

Thank you for your attention

Sebastiano Foti

email: <u>sebastiano.foti@polito.it</u>

Whole presentation available at

http://www.soilmech.polito.it/news/webinar_swm